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Chapter 1

Einstein’s Original Paper on “Special
Relativity”

The source of this chapter is the original German version of Einstein’s paper on Special Rela-
tivity

It is not recommended to read English translations because many translators, thinking they
were smart enough, unethically tempered the original version dramatically, and thus dis-
guised the readers?

dsource

Reading the original paper requires the prerequisites of
%,r‘_r

Michelson-Morley Experiment
- An excellent experiment intro

- What I care most about this experiment is the way we handle "unsolvable” problems. Michelson-
Morley experiment had led to extensive followups trying to explain what was seen in the ex-
periment. All the mediocre conclusion simply said: "Dude, we don’t know.” Albert Einstein in-
novated a new era of Physics out of this conflict. When a problem seems to lead to a dead
end, it's time to innovate; it's time to take on the risk and bring the human into a new world
of new opportunities!

Vf‘.?

. Maxwell's Electrodynamics

1.0.1 Reading Notes...

...of the Paper
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§1. Definition of Simultaneity

[ >

Definition 1: Simultaneity

If an event occurs at (t, x,y, ), then all observers would see this event at (¢,z',y’, '), where x #+ /,
y#y,andy #y’

For example, If | say that “a train arrives here at 7 o'clock,” that means when a clock on that train ticks to
7, my hand watch also points at 7 sharp. There is no “delay” caused by information propagation between
the train clock and my hand watch; they just happen to “synchronize” that way. We say the 7 on the hand
watch and the 7 on the train are | simulaneous events

This definition is ideal when the clock and the attached event are located at the same place because we
can read the clock precisely at that location. But what if there are series of events at other locations and
we need to link them temporally? Can we simply tell which of the two events happened first simply by
comparing the time we see the incident light of the two events? No, because, as Einstein said, “such an
assignment has the drawback that it is not independent of the position of the observer”. For example,
suppose you are reading this PDF document at 9 am in the morning; 20 minutes later your special appara-
tus on your desk detected the light of a collision of two stars in universe that happend 2 billion light years
away. In this case, can we say you saw this PDF file earlier than then star collsion?

What is missing here is the ordering of multiple events. In other words, if we could somehow “synchronize”
the clock located at us, the PDF file, and the star collision, we will be able to say, by looking at all 3 clocks
synchronized, the star collision happened first.

Einstein offered an approch to synchronize the clocks in the following way. He got inspired by Differential
Geometry by realizing that the clock C; of the event located at the vicinity of another clock Cs is infinites-
imally synchronized with clock C,. If there is a clock at point A of space, then an observer located at 4
can evaluate the time of the events in the immediate vicinity of A by simply look at their hand watch. If
there is also a clock at point B, then the time of the events in the immediate vicinity of B can likewise be
evaluated by an observer located at B. But it is not possible to compare the time of an event at A with
one at B without a further stipulation; thus far we have only defined an " A-time” and a " B-time” but not
a "time” common to A and B. The latter can now be determined by establishing by definition that the
"time"” needed for the light to travel from A to B is equal to the "time” it needs to travel from B to A.
Thus we have the following definition

Definition 2: Synchronism (Location-Independent)

Suppose a ray of light leaves from A toward B at “A-time” at t 4, is reflected from B toward A at
“B-time”tp, and arrives back at A at “A-time”t',. The two clocks are synchronous by defintion if

tp—ta=1t,—tp (1.1)

It Follows naturally that

1. ifthe clockin B is synchronous with the clock in A4, then the clock in A is synchronous with the clock
in B, and

2. if the clock in A is synchronous with the clock in B as well as with the clock in C, then the clocks in
B and C are also synchronous relative to each other

This is a very powerful assertion, because it states that for 2 clocks to be “synchronous”, not only do they
need to be ticking at the same rate, but also they must always be pointing at the exact same absolute
instance of time, i.e. both must be both ticking at 9:00:00 am sharp, not one at 9:00:00 and the other at
9:00:03. Another example is that two clocks at Chicago and New York City are never synchronous.
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Applying this Def. 2, we are able to solve the PDF-collision problem. Since the PDF and us are in pretty
much vicinity of each other, we can approximate the two to be synchronous with each other. To syn-
chronize with the star collison, our watch will need to “move backwards” in time by little more than 2
billion years. According to the transitivity law of Synchronism, the clocks of PDF and the collision are new
synchronized. The ordering of the events should be pretty clear now.

The speed of light as a universal constant in empty space is thus:

2AB

V=
ty —ta

(1.2)

u and there is a BIG assumption: all clocks are at rest in a system at rest %

With that, we have a pretty good mechanism to talk about series of events in a system happening at

v 4
different time, because we know how to synchronize them L

§2. Something Stops Working...

[ Principle of Relativity

The laws governing the changes of the state of any physical system do not depend on which one
of two coordinate systems in uniform translational motion relative to each other these changes of
the state are referred to

Principle of the Constancy of the Velocity of Light ]

Each ray of light moves in the coordinate system “at rest” with the definite velocity V independent
of whether this ray of light is emitted by a body at rest or a body in motion

2 principles above along with the Def.2 shall present us an surprising result that a moving rod with a
stationary length r 4 5 will be measured to have a different length measured by an moving observer
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Suppose the rod is moving in the x-direction at a constant speed v. Let the length of the moving
rod, measured in the system at rest, be denoted as r 4 5, Wwhere 4 and B are the two ends of the rod.
In addition, we imagine that the two ends (A and B) of the rod are equipped with clocks (C; and C5)

that are synchronous with the clocks of the system at rest. Hence, C; and C, are synchronous for
the observer in the system at rest whose readings always correspond to the "time of the system

at rest” at the

Classically

An observer co-moving with the rod measures
thisstationaryrodto havealengthoftg—t4 =
t’y —tp = £, where V is the speed of light
andtp,ta,t/y,tp are all drawn from Def.2.

Another stationary observer, who sees the rod
moving, measures the length of the (moving)
rod seeen from a system at rest. The light trav-
els, due to Classical Intertia, ataspeed of v+V/,
relative to the observer. The observer see the
light reaches the other end of the rod at At =
tg —ta. The light ends up travelling a distance
of (v + V)At; this distance must also equal to
the sum of the stationary rod length plus the
extra distance that the rod travels:

(v+ V)ALt =rap + vAL (1.3)
Thus
r
tg —ta = % (1.4)

When the light reflects back:

(V —v)At = vAt —rap (1.5)
T
) —tg = % (1.6)
Therefore
tp—ta=1t,—tp (1.7)

Relativistically

An observer co-moving with the rod measures
this stationary rodto havealengthoftp—t4 =
t'y —tp = ™, where V is the speed of light
andtp,ta,t,, tp are all drawn from Def.2.

Another stationary observer, who sees the rod
moving, measures the length of the (moving)
rod seeen from a system at rest. The light trav-
els, by the Principle of the Constant Speed of
Light, at a speed of 1/, relative to the observer.
The observer see the light reaches the other
end of the rod at At =t — t4. The light ends
up travelling a distance of V At; this distance
must also equal to the sum of the stationary
rod length plus the extra distance that the rod
travels:

VAt =rap + vAt (1.8)
Thus
TAB
tg —ta = 1.9
B—ta= e (1.9)

When the light reflects back:

VAt =vAt —ryp (1.10)
TAB
ty—tp = 1.11
h—tn = g (1.11)
Therefore
tp—ta#t,—tp (1.12)

Note that neither Eq.1.9 nor Eq.1.11 is related to the time = distance The numerators of both equations

speed

are NOT the distance traveled and the denominator is NOT the speed of the travel
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Now, let’s further imagine that each clock of ¢ and C5 has an observer co-moving with it, and that
these observers apply to the two clocks the criterion for synchronism formulated in Def 2. Classi-
cally, both observer co-moving with the moving rod and.the observer in the system at rest declare
C; and C, to be synchronous

b=t =ty — 4B (1.13)

Relativisically, however, observer co-moving with the moving rod, By Def. 2, finds C; and C, do not
run synchronously

tp—ta # bty —tp (1.14)
while the observer in the system at rest declare them synchronous, in this case

\ we have a contradiction /

How do we resolve the contradiction?

There is No Absolute Simultaneity
Instead, two events that are simultaneous when observed from some particular coordinate system
can no longer be considered simultaneous when observed from a system that is moving relative
to that system

The fact that is no absolute conformance in simultaneity indicates that there must be some form of trans-
formation where two simultaneous events are transformed to be simultaneous in another system. The next
section explore this transformation which is famously called the “Lorentz transformation”

§3. Lorentz Transformation - Quantifying Non-Simultaneity

Let's imagine there are 2 coordinate systems, K and %, both “at rest” in their own right. Now let
system k start moving in the increasing z-direction relative to K with a speed of v. Let's further
image that K and k are contained within a “larger” coordinate system or space called S, where
S # K # k. We now imagine the space S to be measured both from

b the system K at rest by means of the measuring rod at rest; the measurement is obtained
as (z,vy, 2), and

4
P4 the moving system & by means of the measuring rod moving along with it; the measurement
is obtained as (¢, 7, ¢)

In the setup above, we assign a measuring rod to both K and k. Further, all clocks in K are
synchronized to have a time ¢ and all clocks in % are also synchronized to have a time

For every event (z,y, z,t) measured in the system K at rest, there corresponds to a “fixed” or
transformed event (£, 7, ¢, 7) measured in the system k. Our target is to derive the relation be-
tween K (z,y, z,t) and k(¢,n, ¢, )

N\, ’

In this setup, let’s talk about how observer k measures things in K. Suppose there is a point at rest in
K : (z,y,2). Let's denote this point measured from within system k as k : (z/,/, 2/).

We will assume that the origins of k and K coincide initially?. Thatisat ¢y = 0, z = «’

9The Collected Papers of Albert Einstein, Vol.2, page 149

After some time ¢, since K is effectively moving to in the negative z-direciton relative to k, observerin k
will now see this event further to the left, i.e. the coordinate of this event now becomes
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=x+c—vt=x—vt (1.15)

¢ = 0 because of the assumption we have made. Eq. 1.15 allow us to link systems k£ and K by a common

attribute - z’. So let’s start from here.

Looking at & only

Suppose that at time 7 a light ray is sent from the origin of the system k along the x-axis to 2’ and
is reflected from there at time 7; toward the origin, where it arrives at time 75; we then must have

To —T1 = T1 — 710

1
5(7’04—7’2):7’1 (116)

' x’

V- * V+o
Eq. 1.9 Eq.1.11
have the following general equation of

Since it is also true that 7, = 7o + , by writing out the parameters of 7 in Eq.1.16, we

L 0,008 47 (0,0,0,m+ —— + -~ V| =7 (0,0t + - (1.17)
27-77’ T , U, U, To V — o V+U =T7\|\T,U,U, V — v .
Taking the derivative of + with respect to =’ and applying the Chain Rule of
or _or ot
oz’ Ot Oz
give us
107 1 1 or 1 or
m[v_ﬁ—wv]—@*(v_v)a (118)
which simplifies down to
or v or
It should be noted that .# = 2, + ;-*— 2 is a Linear operator “ because
o(r + m2) v O+ T2)
L(n+m)=—77 Ve R— (1.20)
_ oy Om v on v 019
“w o Vi e ViR ot (.21)
ZX(’Tl)-i—f(TQ) (1.22)
and
Oer v der or v or
X(CT)_W+—V2—UZW—C<%+—V2—’U2§>_CZ(T) (123)

Therefore Eq.1.19 has a solution of the form®

10
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v
T:f(vz_UQx—t> (1.24)
We shall declare that
v v
r=7f <V2 — x — t) = ¢(v) (t ~ T2 x’) (1.25)
Mathematics Physics

which assumes that transformation between = and ¢ must be linear which can be inferred by the
following fundamental postulate®:

Space and time are homogeneous?

qWhat proof do we have that the universe is homogenous? In physics we can’t prove something like this. It must
be a postulate - something we take as a fundamental assumption on which to base our theories. If the assumption
is wrong then eventually we will find experimental evidence of this. What we can say is that currently there is no
evidence for any lack of homegeneity or isotropy in the universe.

With Eq.1.25, we shall deduct the first 3 positional transformations in (£,7,, 7). For a light ray
emitted at time 7 = 0 in the direction of increasing ¢, we have

E=Vr="Ve) (t v x') (1.26)

T V2 2
which, combined with Eq.1.9, gives
V2
£=p(v) <V2 — vg> 4 (1.27)

Analogously, by considering light rays moving along the two other moving axes while % is still
moving in the x-direction:

n="Ve(v) (t - ﬁﬂf/) v

y? + (vt)? = (Vit)? =>n= @(U)my (1.28)
=0

(=Vo(() (t — i’ vV

22+ (’Ut)2 = (Vt)2 =>(= QO(U)WZ (1.29)
=0

Note that Eq.1.27, 1.28, and 1.29 are based on the assumption that & starts out at the same point
of K's origin

9See Partial Differential Equations, Strauss, page 2 for definition of Linearity

bsee Partial Differential Equations, Strauss, page 6

‘In a1964 paper, Erik Christopher Zeeman showed that the Lorentz transformation can be proven by applying the ho-
mogeneity principle to equations that represent the corresponding quantities at rest. This shows that the Lorentz trans-
formation must be linear in both space and time coordinates

Now let’s bridge k£ and K with Eq. 1.15 by plugging it into Eq. 1.25, 1.27, 1.28, 1.29:

11
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T =p(v) [t = ﬁ(:ﬂ - 'Ut)] (1.30)
= o(v) (Vzt_fj;:Serv%) (1.31)
= ¢(v) (M) (1.32)
_ @(U)VQL_QUZ (t- ) (1.33)

€ = o(v) (1/2‘/—2112) (z — vt) (1.34)

1= pl0) sy (1.35)

(= w(v)\/%z (1.36)

(1.37)

It does not lose generality to say if k is moving relative to K at speed v then K is moving relative to & at
speed —wv. Directly measuring coordinates in K is effectively the same thing as transforming (z,y, z,t) in
K to (&,m,¢,7) and then back to (z, y, 2, t) so we have along the x-axis:

x=wem(Vifﬁ)ﬂm(vlfﬁ)x=wm@@w(V]f#)zr (1.38)

where v is the speed of K relative to K, which is clearly 0. Therefore

vz o\®
2 =) (7a=g ) = plole-0)e (1.39)
which leads to the identity transformation of
p(v)p(—v) =1 (1.40)

Let's place a rod of length [ at the origin of k¥ perpendicular to £-axis. If k is moving to the x-direction
relative to K at speed v, the measurement of the rod length, which we denote y;, in K satisfy

Vv

l= @(U)\/ﬁyl (1.41)
By symmetry
v
L= p(—v) gt (1.42)
p(v) = p(—v) (1.43)
Combining 1.43 and 1.40 leads to
p(v) = +1 (1.44)

12
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By definition we know [ > 0, y; > 0,and V > 0, therefore,

pv)=1 (1.45)

Since we focus on the z-direction only, it is our intuition that nothing shall change in y or z direction, i.e.

n=uy (1.46)
C=2z (1.47)
Given that Eq. 1.25, 1.27, 1.28, 1.29 becomes
r—t ﬁx/ (1.48)
_ (VQVQUQ) o (1.49)

13
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Chapter 2

Special Relativity

2.1 Fundamental principles of special relativity theory (SR)

2.1.1 On “Principle of relativity (Galileo)”
Galilean invariance

Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other
words, all frames related to one another by such a transformation are inertial (meaning, Newton’'s equa-
tion of motion is valid in these frames).” The proof has been given by the book on page 2.

2.2 Construction of the coordinates used by another observer

2.2.1 Why would the tangent of the angle is the speed in Fig. 1.2?

Suppose O and O both start out at the same position where O moves along the = at some speed. After
t1, observer O sees O at position z;:

O1 = (z1,t1)
Observer O, however, still sees themself at z = 0:

(/_)1 = (Oa tl)

By definition where “¢ is the locus of events at constant z = 0”, £ is the straight line that passes the origin
and the (z1,t):

TGalilean invariance

17
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(z1,t1)

Tangent of this angle is ©

0o, Oy

1

2.3 Invariance of the interval

Let's say, in a simplified 1D case, event £ = (xg,to) and P = (z1,1).

(Az)? — (At)? = (z1 — 20)* — (t1 — to)?
Since the speed of light is 1,

(1‘1 — x0)2 — (tl — t0)2 = (171 — 2110)2 — (tl x1— to X 1)2 = (iEl — CIZO)2 — (5131 — .730)2 =0

3 3
A =" Mag (Az®) (AzP)

a=08=0

Before spending too much time on expanding the equation, we can pick up a pair of indices of («, 8) =
(a*, 5*) where o* # *. Then we would definitely have the following 2 terms in the expansion:

18
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Since

Mo (8277) (207)

Mo (27) (2077)

(aze7) (a07) = (A0) (227)

We can then group these 2 terms and factor out the product, leaving

(Ama*) (Axﬁ*) (Moo + Mge )

The terms of expanded A3? can be expressed in a matrix of

MOO A.TO A.TO

MloA.’IJlA{IJO

MgoA.’ﬂzAbe

M30AIE3A?EO

MOleOAxl MOQAJ}OAJJQ

M11A$1A$1 M12A$1A$2

M21A£L'2A£L'1 MQQAZ’zAiL'Q

M31ASE3ASE1 MggAl‘SAl‘Q

M03AJ}0A.’L‘3

M13A$1A$‘3

M23ACE2A.’E3

MggAl‘gAl‘S

Because the off-diagonal terms always appear in pairs above, we could effectively replace them with their

mean value:

Ma*ﬁ* = Mﬁ*a* =

(M o+ + M geg)

2

where o* # 8*. And since M 3 = Mg, if o = 3, we conclude that

M3 = Mg, forallaand g

A§2 = MOO (A’I“)2 +

3
2 (Z MOiAxi> Ar |+
=1

>

13

i

>

7

1

MijAJ?iij

19
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3 3
AS? =N Mg (Az®) (AzP) (2.1)
a=05=0
=30 Mop (A®) (AP) + 30N Mg (M) (A2”) + 303 Mos (A2) (Az)  (2.2)
a=0 =0 a=0 =0 a=1p=1
3 3 3 3
=3 MogAt (AzP) + 3 Moo (Ax®) At + Y > Mag (Az®) (AzP) (2.3)
B=0 a=0 a=1 =1
3 3 3 3
= Moo (A)° + > MogAt (Az?) + 3" Moo (Az®) AL+ YY" Mop (Az®) (AzP) (2.4)
B=1 a=1 a=1 =1
3 ) 3 3
= Moo (At)? +2 [Z Mo At (Ax')| |+ Mg (Az*) (Az”) (2.5)
i=1 a=1p=1
2.5

The answer is: not necessarily. We are probably looking at a wrong problem.

The solution to exercise 1.8 takes Az; = —Aux, to simplify the equation 2.10. This is not
sufficient, because what if Az; # —Ax,? This box takes a general approach where we do
not assume any relationship between Az; and Az,

Note that this statement is based on the aforementioned assumption that As? = As? = 0, which
has been proved here. Therefore, by 2.5, we have

AF(At, Azy) — A (AL, Azy) (2.6)
3 3 3

= Moo (At)° +2 | > MgAt (Axf) ZZ op (Az%) (AZP) (2.7)
i=1 a=1p=1

=2 lz Mo At (Axt)

. Z Z Mg (Aaf) (Aaf) -

o=
2 [ZMOZAt A%] Zl ﬁz Mg (Aa5) (A2f) (2.8)
_ ;;MQB (Aaf) (Aaf )—gi os (A2) (Acf) +
2|3 arar(aah)| 2|3 naa s 29)
_ ; ﬁz_l M. [(Ax?) (A f) (AxQ)(Axg)}—kQ iMOiAt (Azi — Azi)| =0  (2.10)

We won't be able to go further unless with some assumed relationships between Az and Axi.

20


https://github.com/QubitPi/general-relativity
https://qubitpi.org/

Oty Nte 2 fonnal Rediivity o Qb

A

But since we do not assume any relations between them...

...let's step back and re-think about this problem then and forget about Az and Az%.

We go through all these for the proof of invariance of the interval. This is to work out a relation
between As? and As?. The ( detail )is about Az¢ and Azé but the ' goal | is to derive some form
of

3 3

A = f(As%) =) Mg (Az®) (AzF)

a=0 =0

where
3

As? = —(At)* + ) (Az')?

i=1

Let’s work on f (As?) directly toward that goal then

Assuming As? = As? = 0, we have At = +Ax; plugging it into Eq. 2.5 gives us

3 3 3 3
A =My (M) +2 |3 Mo (A2')°| + 37 Mg (Az®) (A2P) (2.11)
i=1 i=1 a=1p=1
3 ) 3 3
= (Moo +2Mg;) > (A2")" + > Y Mg (Az*) (Az”) (2.12)
i=1 a=1p=1

Eq.2.12 seems to suggest a linear relationship between As? and As%. How do we go about proving it? We
now start the formal proof of Invariance of Interval

4 N\
Theorem 1 (Proportionality of ds? and ds?)

Let n,p > 1 be integers, d := n + p and V a vector space over R of dimension d. Let i be an
indefinite-inner product on V with signature type (n,p). Suppose g is a symmetric bilinear form
on V such that the null set of the associated quadratic form of A is contained in that of g (i.e.
suppose that for every v € V, if h(v,v) = 0 then g(v,v) = 0). Then, there exists a constant C' € R
such that g = C'h. Futhermore, if we assume n # p and that g also has signature type (n, p), then
we have C >0

. J

The assumptions above on h means that h : V x V' — R is a bilinear form which is symmetric and non-
degenerate such that there exists an ordered basis {v1, ..., Vn, Vnt1,...,va} of V For which

-1 a=b,wherea,be{l,...,n}
h(ve,v) =<1  a=b,wherea,be {n+1,...,d} (2.13)
0 otherwise
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An equivalent way of saying this is that & has the matrix representation {I"
basis {v1,...,vq} Of V

})} relative to the ordered
P

If we are considering the special case where n = 1,p = 3 then we are talking about the situation of a
matrix signature in 4-dimensions
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Chapter 3

Topology

The name of this division (“Topology”) is in honor of, from my sincere respect, the great book
by George F. Simmons, Introduction to Topology and Functional Analysis

3.1 Metric Spaces

Definition 3: Metric Space

Let X be a non-empty set. A metric® on X is a real function d of ordered pairs of elements of X which
satisfies the following conditions

V<

e

&

d(z,y) >0,andd(z,y) =0 <= z =1y

Xy

d(z,y) = d(y,z) (symmetry)

5

d(z,y) < d(z,z) + d(z,y) (the triangle inequality)

9Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.51

d(z,y) is called the distance between x and y. Thus a metric space consists of 2 objects:

1. anon-empty set X, and
2. ametricdon X

" Now let X be a metric space with metric d, and let

{xn}:{xlvm%"' 7$n;'} (31)

be a sequence of pointsin X. We say that {z,,} is convergent if there exists a point = in X such that either

1. for each ¢ > 0, there exists a positive integer ng such that n > ng = d(z,, ) < ¢, or, equivalently,

TIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.70
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2. for each open sphere S.(z) centered on z, there exists a positive integer ng such that z,, is in S.(z)
forall n > ng

We say in this case that z,, converges to = and x is called the limit of the sequence {z,,} and we sometimes
write z,, — x in the form of

limz, ==z

Now let’s consider two cases of convergence:
N7 <
)a r
foreach e > 0, there exists a positive integer ny such thatn > ny = d(x,,z) < ¢ (the same definition
above)
N <
cr; $
for each ¢ > 0, there exists a positive integer ng such that m > ng = d(z;,,z) < ¢

By the symmetry and triangle inequality of the Def. 3:

AT, Tn) < d(Tm,x) + d(z,20) = d(Tm, ) + d(T0,7) < =¢ (3.2)

[N e)
N

for all m,n lgng. Therefore, every convergent sequence {z,} has the following property:

[ For each ¢ > 0, there exists a positive integer ng such that m,n > ng = d(xm,, z,) < € ]

Asequence with this propertyis calleda’ Cauchy sequence . Intuitively, a Cauchy sequenceis asequence
whose elements become arbitrarily close to each other as the sequence progress:

Tn

In addition, we have also shown that every convergent sequence is a Cauchy sequence. The converse
of this, however, is not necessarily true. That is, a Cauchy sequence is not necessarily convergent. As an
example, consider the subspace X = (0, 1] of the real line where z,, € X. The sequence defined by z,, = +
is easily seen to be a Cauchy sequence in this space, but it is not convergent, because the point 0 ¢ X is

not a point of the space
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e bed I _‘2\

T, =0¢& X n

Figure 3.1: Here, the real numbers in the range of X = (0, 1] takes on the values “y-axis”. We use a solid
line to denote the range of n values under the subspace of X. It really should be a dotted line because »
can only be integers. We do that in order to distinguish it from the range we are not concerned with, i.e.
X =(1,0)

The notion of a convergent sequence is not intrinsic to the sequence itself, but also depends on the struc-
ture of the space in which it lies. A convergent sequence is not convergent “on its own”; it must converge
to some point in the space...

...Sounds wordy?§ Let's put it this way: when the space has a hole in it. Like if you remove 0 from R
like in the case above, then % is a Cauchy sequence that doesn’t converge.

We are now ready to introduce the concept of complete metric space, which we define as follows:

Definition 4: Complete Metric Space

A complete metric space is a metric space in which every Cauchy sequence is convergent

Definition 5: Linear Space

Let L be a non-empty set, and assume that each pair of elements x and y in L can be combined by
a process called addition to yield an element = in L denoted by » = x + y. Assume also that this
operation of addition satisfies the following conditions:

<

r+y=y+tx

&5

z+y+2)=(x+y) +2

gj

-

NGt

 There exists in L a unique element, denoted by 0 and called the zero element, or the origin, such
thatx +0 = x forevery x

P

ANZ

“1 To each element x in L there corresponds a unique element in L, denoted by —x and called the

negative of x, such that z + (—xz) = 0.

We adopt the device of referring to the system of real numbers or to the system of complex numbers
as the scalers. We now assume that each scalar o. and each element z in L can be combined by a
process called scalar multiplication to yield an element vy in L denoted byy = ax in such a way that
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<
it

L alzty)=ar+ay
<
o

V(a4 p)r=ax+ Pz
W<

3 (ap)z = a(pe)
V<
Zs\éﬂr l-z=2

The albegraic system L defined by these operations and axioms is called a linear space®

9Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

Depending on the numbers admitted as scalars (only the real numbers, or all the complex numbers), we
distinguish when necessary between real linear spaces and complex linear spaces. A linear space is often
called a vector space and its elements are spoken of as vectors.

Definition 6: Normed Linear Space

A Normed Linear Space® is a linear space on which there is a norm defined, i.e. a function which
assigns to each element z in the space a real number ||z|| in such a manner that

V<
x\)g’
. |z|]| >0, and||z|]| =0 < =0

V<
%\JQ
S eyl < 2l + [yl

V<

wg’
TR x| = a2l

9Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

Intuitively, anormed linear spaceis simply a linear space in which a notion of the distance from an arbitrary
element to origin is defined.

Definition 7: Banach space

A Banach space® is a normed linear space which is complete as a metric space.

9Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

One of the principal applications of the tory of Banach algebras develped from Def. 3 to Def 7 is to the
study of operators in Hilbert spaces.?

Definition 8: Hilbert Space

A Hilbert space® is a complex Banach space whose norm arises from an inner product in which there
is defined a complex function (v, w) of vectors v with the following properties:

N <
NQ' (Oé’U L ﬁfw7u) = a(v, U) + B(w7u)

2|ntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.243
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(v,v) = [l

9Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.245

A complex function?is one whose range consists of complex numbers

If 2 = a + b is a complex number, then its conjugate 7 is defined by z = a + i(—b)?

9Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.17
bIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.53

3.2 Indefinite Inner Products

Definition 9: Indefinite Inner Product

Let C™ be the n-dimensional complex Hilbert space consisting of all column vectors x with complex
coordinate z9), j = 1,2, ... ,n. The typical column vector z will be written in the form
z = (2W,2W ... 2(). The standard inner product in C" is denoted by (., .). Thus,

(@,y) =Y aWy® (3.3)
j=1

wherex = <m(1), M, ,x(")>, Y = <y(1), y ,y(")>

A function (.,.) from C™ x C™ to C is called an indefinite inner product in C™° if the following axioms
are satisfied:

V<

D2 , .. ,

21 Linearity in the first argument:

[ax1 + Br2,y] = afz1,y] + Blr2, Y] (3.4)

forall zy, x5,y € C* and all complex numbers alpha, 3

Antisymmetry:

[z,y] = [y, ] (3.5)

forallz,y € C*
V<
‘ Nondegeneracy: if [x,y] = 0 for ally € C", thenz = 0

9Indefinite Linear Algebra and Applications, L. Rodman, Peter Lancaster, Israel Gohberg. 2005, p.7
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Chapter 4

Linear Algebra

4.1 Linear Algebra

Definition 10: Vector Space

The spaceR™ consists of all column vectors v withn components®

9Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 120

The components of v are real numbers, which is the reason for the letter R. A vector whose n components
are complex numbers lies in the space C"

Definition 11: Subspace

A subspace® of a vector space is a set of vectors (including 0) that satisfies 2 requirements: If v and
w are vectors in the subspace and c any scalar, then
v

=
2"% v + w is in the subspace

%
2\%’ cv Is in the subspace
In other words, the set of vectors is “closed” under addition and multiplication - all linear combina-

tions stay in the subspace

9Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 122

Intuitively, we can visualize a subspace in the 3-dimensional space R3. Choose a plane through the origin
(0,0,0). That plane is a vector space in its own right. If we add two vectors in the plane, their sumisin the
plane; if we multiply an in-plane vector by 2 or —5, it is still in the plane. This plane is a vector space inside
R3 or is a subspace of the full vector space R3

Definition 12: Column Space

The column space, C(A), consists of all linear combinations of the columns, i.e. the combinations of
all possible vectors Ax

The subspece C(A) is the “span” of matrix A
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A set of vectors spans a space if their linear combinations fill the space

Definition 14: Basis For a Vector Space

A basis? for a vector space is a sequence of vectors with 2 properties

V7.<

>4 The basis vectors are linearly independent, and
Y <

%

1 they span the space

9Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 172

4.1.1 Eigenvalues and Eigenvectors

eI NN NN NN NN NN NN NN NN NN NN NN NN NSNS NN NN NN NN NSNS EEEEENEENEENENNEEEEEEEEEEEEy

All matrices in this section are square

RIITN
amns®

QNN NN NN NN NN NN NN NSNS E NN NN EE NSNS EEEEEEEEEEEEENEEEEEEEEEEEEEEEEEEEEssEEnnns®

Almost all vectors change direction, when they are multiplied by a matrix A. Certain exceptional vectors
x don’t and are in the same direction as Ax. Those are the eigenvectors’. By definition, the result of this
multiplication shall be a number times the original z;, i.e.

Az = \x (4.1)

We call ) an eigenvalue of A.

The eigenvalue ) tells whether the special vector x is stretched (e.g. 2) or shrunk (e.g. 1) or reversed (-1)
or left unchanged (1) when multiplied by A. When A = 0, Then Az = 0z means this eigenvector x is in
nullspace?

Matrix Diagonalization

Why do we study disgonalizing a matrix?

When z is an eigenvector, multiplication by A is just multipliation by a number \: Az = \z. All the
difficulties of matrices are swept away, because the matrix A turns into a diagonal matrix A when
we use the eigenvectors properly.

Suppose a n by n matrix A has » linearly independent eigenvectors x4, . .., x,,. Put theminto the columns
of an eigenvector matrix S. Multiplying A with S3:

TIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 283
2

Definition 15: Nullspace

The nullspace of A consists of all solutions to Az = 0. These vectors = are in R™. The nullspace containing all solutions of
Ax = 0 is denoted by N (A) (Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 132)

3Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 298
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AS=A|xy ... xp ] (4.2)
= )\1.’361 oo )‘nmn ] (43)
- )\1
L An
AL
= S '.. (4.5)
An
Let
A
A= (4.6)
An
Then
AS=SA or S'AS=A or A=SAS! (4.7

It is important to keep in mind that S has an inverse because it's columns are linearly independent

@& We call A the Eigenvalue Matrix

Definition 16: Diagonalization

Suppose an by n matrix A has n linearly independent eigenvectors x1, . .., x,. . Then S~'AS is the
eigenvalue matrix A

A1
S 1AS = A = (4.8)

Definition 17: Bilinear Form

Let F be a field and V' a vector space over F'. A bilinear form onV is a function B : V x V — F that
is linear in each variable when the other one is fixed. That is

B(v+v',w) = B(v,w) + B(v',w) (4.9)
B(cv,w) = cB(v,w) (4.10)

forallv,v',w € V andc € F, and

33


https://github.com/QubitPi/general-relativity
https://qubitpi.org/
https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem

Oty Nte 2 fonnal Rediivity o Qb

B(v,w+ w') = B(v,w) + B(v,w") (4.11)
B(v, cw) = ¢B(v,w) (4.12)
forallv,v,w' € Vandc € F
We call B symmetric when
B(v,w) = B(w,v) (4.13)

forallv,w e VA

Definition 18: Linear Transformation Definition 19: Field
The transformation is linear if it meets these A field is a set of elements in which a pair
requirements for allv and w°: of operations called multiplication and ad-

dition is defined analogous to the opera-
tions of multiplication and addition in the

T(cv + dw) = ¢T(v) + dT(w)  (4.14) real number system (which is itself an ex-
ample of a field)?
for allc and d 9A. Fields, Chapter I: Linear Algebra, Galois The-
ory: Lectures Delivered at the University of Notre
9Introduction to Linear Algebra, Strang, 4th Edi- Dame, Project Euclid

tion, 2009, p. 375

Definition 20: Group

Agroup? is anon-empty set G together with a rule that assigns to each pair g and h of elements
of G and element g + h such that

V<

:\’VQ’ g * h € G, which we say G is closed under *

V<

N‘Q’ g (hxk)=(g*h)«k forallg,h,k € G, which we call « being associative

V<
:\VQ’ There exists an identity element e c€ G such thate x g = g* e forallg € G

V<
S .
Z&%’ Every element g € G has an inverse g~ suchthatg+g ' =g lxg=ce

9Introduction to Group Theory, Michael Wemyss
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Definition 21: Vector Space (Field Theory)

IfV is an additive abelian group with elements A, B, .. ., F' a field with elements a,b, . . ., and
if foreacha € F and A € V the product aA denotes element of V, then V is called a (left)
vector space over F if the following assumptions hold:

a(A+ B) =aA+aB (4.15)
(a+b)A=aA+DbA (4.16)
a(bA) = (ab)A (4.17)
1A= A (4.18)

(4.19)

9Keith Conrad
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Chapter 5

Riemannian Geometry

This chapter was raised by the discussion of Green's Theorem

There are lots of texts around the topics of Riemannian Geometry. Here is a list of threads in which great
people recommended good books on it

N2 <
Riemannian and Pseudo-Riemannian Geometry

N7 <

Beginner’'s book for Riemannian geometry
N2 <

4
N

Need help finding a good book on Riemann Geometry
N2 <

Introductory text on Riemannian geometry

One will need quite a solid backgound in topology, and especially differential geometry. | would recom-
mend the book series by Lee: Introduction to topological manifolds / introduction to smooth manifolds/
introduction to riemannian manifolds.’

(Study notes on Riemannian Geomery J

5.1 What are Manifolds?

5.1.1 Intuitive Meaning

A manifold is a space that "looks like” regular old Euclidean space (like a line, a plane, 3d space, and so on)
if we zoom in enough. More formally, every pointin a manifold has a neighborhood that is homeomorphic
to ("the same as”) a neighborhood in some Euclidean space.

Easy examples include circles and spheres. A circle is curved in a global sense, but if you're realllllllly close
to a circle, it looks like a line. Similarly, a sphere is curved in a global sense, but if you're really close, it
looks like a plane (which is why the Earth looks flat when we live on it). If we cut off a little chunk of
circle, it's essentially just a line (that is, it's the same as 1D Euclidean space). If you cut off a little chunk
of sphere, it's essentially just a plane (that is, it's the same as 2D Euclidean space)?.

Book recommendations
2r/explainlikeimfive

37


https://physics.stackexchange.com/a/247415
https://math.stackexchange.com/questions/1546037/beginners-book-for-riemannian-geometry
https://math.stackexchange.com/questions/499945/need-help-finding-a-good-book-on-riemann-geometry
https://mathoverflow.net/questions/19505/introductory-text-on-riemannian-geometry
https://www.reddit.com/r/math/comments/tt2klk/comment/i2v4nud/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button
https://www.reddit.com/r/explainlikeimfive/comments/nvifq7/comment/h13wot6/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button

Oty Nte 2 fonnal Rediivity o Qb

This sounds like a manifold is always 7 dimension higher than Euclidean space. In this sense, an n-dimensional
Euclidian space R” is the prototype of an n-dimensional manifold.

It should be noted that the number “»n” in manifold is not the same thing as the number of coordi-
nates we use to locate a position in Euclidian space.

Forinstance, manifolds of dimension 1 are lines and curves. It is easy for us to see that a real line is
an example of such case. The space curves, which are often diescribed parametrically by equations
such as (z,y, 2) = (f(t), g(t), h(t)), are also 1-dimensional manifolds. See Fig 5.1 below:

Figure 5.1: Intuitively, if we keep zooming in, we get a straight line on the spiral

In essence, an n-dimensional manifold “looks like” R™ locally.

5.1.2 Formal Definition of Manifolds

3The chief problem with the intuitive introduction of manifolds is that it depends on having an “ambient
Euclidean space” in which our n-manifold lives. This introduces a great deal of extraneous structure that
is irrelevant to our purpose. Instead, we would like to view a manifold as a mathematical object in its
own right, not as a subset of some larger space. They key concept that makes this possible is that of a
topological space.

We begin by defining topological spaces, motivated by the open subset criterion form continuity metric
spaces.

Definition 22: Continuous Mapping

If (My,dy) and (M, ds) are metric spaces and z is a point in My, a map f : My — M is said to be
continous at x if for any e > 0 there exists § > 0 such that d; (z,y) < & implies dx(f(x), f(y)) < € for
ally € My, and f is continuous if it is continuous at every point of M

9Introduction to Topological Manifolds, John M. Lee, 2nd, P.398

Definition 23: Image

Let f : X — Y bea function. IfS C X, the image of S under f, denoted by f(S), is the subset of Y
defined by

f8)={yCY:y= f(x) forsomex € S} (5.1)

9Introduction to Topological Manifolds, John M. Lee, 2nd, P.387

3Introduction to Topological Manifolds, John M. Lee, 2nd, P.19
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Definition 24: Preimage

If T is a subset of Y, the preimage of T under f (also called the inverse image) is the subset
f~YT) C X defined by”

YT ={ze€X: flz) €T} (5.2)

9Introduction to Topological Manifolds, John M. Lee, 2nd, P.388

Definition 25: Open Subset

Let M be a metric space®
<
}‘d Foranyxz € M andr > 0, the (open) ball of radios r around z is the set

B.(z)=ye M:d(y,x)<r (5.3)
and the closed ball of radios r around x is

B.(z)=yeM:dy,z)<r (5.4)
¥y
a2
’;‘d A subset A C M is said to be an open subset of M if it contains an open ball around each of its
points
) A

®
}‘é' A subset A C M is said to be a closed subset of M if M . A (set subtraction) is open

9Introduction to Topological Manifolds, John M. Lee, 2nd, P.397

~N
J

Theorem 2 (Open Subset Criterion for Continuity)

Amap f : M; — M, between metric spaces is continuous if and only if the preimage of every
open subset of M, is open; that is, whenever U is an open subset of My, its preimage f~1(U) is
openin M;

-
-

Proof First assume f is continuous, and let U C M, be an open set.
Let x € M, be an element of the preimage of U; that is, z is any point in

7Y U)={z € My : f(z) € U}. Since U is open, there exists some r = ¢ > 0 such that B.(elementin U) =
B(f7'U) cU

w ‘
o)
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Part IV

Electromagnetism

41
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This question arose because | noteiced Einstein dedicated a huge portion of his famous Special
Relativity paper on its application in Electromagnetism.

In fFact, Einstein was trying ridiculously hard to-unify his General Theory of Relativity with Electro-
magnetism?. Why?

Relativity describes our Universe pretty good but works horribly in the microscopic world like sub-
atomic particles, whereas Quantum Physics works from the opposite. Relativity is, in some sense,
not complete

Those who are familiar with Maxwell’s.Equations-know by heart that Electrodynamics is a beau-
tifully complete and successful theory. It has become-aking of paradigm for physicists: an ideal
model that other theories strive to emulate.

Studying Electromagnetism is same thing as studying the standard model of Physics which shall
guide my study of General Theory of Relativity.

a...Albert Einstein, who attempted to unify his general theory of relativity with electromagnetism ..., Wikipedia
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Chapter 6

Mathematics

6.1 Differential Calculus

-

Theorem 3 ( Fundamental Lemma?)
9Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 680
Suppose that a function z = f(x,y) and its partial derivatives f, and f, are defined at a point
(z0,y0), and also through some neighborhood of this point. Suppose further that f, and f, are
continuous at (zg,yo). Then the increment Az can be expressed in the form of
Az = fr(z0,Y0) Az + fy(To,0)Ay + e1Az + e2Ay (6.1)

where ¢; and e; — 0as Az and Ay — 0

.

To prove this statement’, we analyze the change Az in 2 steps as shown in Fig. 6.1:

Yy
(xo + Az, yo + Ay)

Ay

Ax
(o,90) (0 + Az, y0)

x

Figure 6.1: We assume Az = f(zo + Az, yo + Ay) — f(zo,y0) and Az = Az + Asz

1. changing x alone and moving from (zg, yo) to (zo + Az, yo), and then
2. changing y alone and moving from (xg + Az, y0) to (zg + Az, yo + Ay)
We denote the first change in z by A; z, so that

T Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 841
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Az = f(xo + Az, y0) — f(20,%0) (6.2)

By The Mean Value Theorem?, we can write this as

Az = Ax fo(21,90) (6.3)

where z; is between z( and z + Ax. Smilary, if we denote the second part of the change in z by Az, so
that

Aoz = f(xo + Az, yo + Ay) — f(z0 + Az, y0) (6.4)

then

Aoz = Ayfy(zo + Az, y1) (6.5)

where 3, is between 1, and 1 + Ay.

Now as Az and Ay — 0, 1 — z and y; — yo. By the assumed continuity of f, and f, at (zo,y0), we can
write

fe(@1,90) = fo(wo,90) + €1 (6.6)
fy(@o + Az, y1) = fy(20,90) + €2 (6.7)

where ¢; and e — 0 as Az and Ay — 0. Plugging Eq.6.6 into EqQ.6.3 gives us

Az = Az [fo(m0,y0) + €1] = Az fr(z0,90) + Azey (6.8)

and similarly Eq.6.7 into Eq.6.5

Aoz = Ay [ fy(xo,y0) + €2] = Ay fy(xo,y0) + Ayer (6.9)

Theorem 4 ( The Mean Value Theorem?)

9Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 76

Let y = f(x) be a function with the following two properties:
1. f(z) is continuous on the closed interval [a, b]; and
2. f(x) is differentiable on the open interval (a, b)
Then there exists at least one point c in the open interval (a, b) such that

f(0) = f(a)

HCEEEL

or equivalently,

46


https://github.com/QubitPi/general-relativity
https://qubitpi.org/
https://trello.com/c/byu9Pyy8

Oty Mte ~S2 fonaal Rbitivity o Qb P &

Since we have assumed Az = A1z + Ayz

Az = Az fr(xo,y0) + Azer + Ay fy(xo,y0) + Ayea = fo(@o,y0) Az + fy(z0,y0) Ay + e1Az 4+ e2Ay  (6.10)

8

3 Now Let f(x,y, z) be a function of 3 variables defined throughout some region of three-dimensional
space, and let P be a point in this region. At what rate does f change as we move away from P in a
specified direction? In the directions of the positive X, y, and z-axes, we know that the rates of change off
are given by the partial derivatives 92, gjj and 2L, But how do we calculate the rate of change of f if we
move away from P in a direction that is not a coordlnate direction?

Let P = (x,y,2) and R = xi + yj + zk being the position vector of P. If we move away from P to a nearby
point Q = (z + Az, y + Ay, z + Az), then the function will change by an amoutn Af. Let As denote the
distance between P and @, then we have

4 _ lim Af

ds ~ As—0 As (6.11)

We Further assume that f(z,y, z) has continuous partial derivatives with respect to z, y, and z.

Unless explicitly stated otherwise, all functions we deal with are always continuous in all of our
discussions

The Fundamental Lemma enables us to write Af in the form of

8f fA + —fAz—Fele—l-eQAy—FegAz (6.12)

Af= (“)x 8 0z

As As — 0,i.e. as Az — 0, Ay — 0,and Az — 0, €1, €2, e3 — 0. Dividing Eq.6.12 by As gives

A d d d
[ 8f x+8f y+8fz

AlLrD)O As  Oxds  Odyds 0zds (6:13)
Combing Eq.6.13 and 6.11 results in
ﬁ_&idi+ai@+gdi (6.14)

ds Oxds Oyds Ozds

6.1.1 Gradient

4 The theorem on partial derivaves states that

oT oT oT
dl' = | — | dx + dy + dz 6.15
(&) e+ (&) () €19
3Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 681
4Introduction to Electrodynamics by Griffiths, 3rd, p. 13
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Writing it in the dot product form:

iT = (‘Z@ + %g + ‘;;) - (dw + dyg + dz2)

=VT-dl
where

oT oT oT
T="4+"g+z2
v 6xw+8yy+62z

is the gradient of 7. We also call V as the vector operator that acts upon T

(6.16)

(6.17)

(6.18)

The Geometrical Interpretation of the Gradient

The doc product 6.17 can be written as

dT = VT -dl = |VT||dl| cosé

We soon realize that the maximum change of T occurs when 6 = 0, therefore

(6.19)

Now there are 3 ways the operator V can act:
1. On a scalar function T: VT (the gradient, which we've discussed so far)
2. On a vector function via the dot product: V - v (the divergence)

3. On avector function via the cross product: V x v (the curl)

6.1.2 Divergence

From the definition of V, we construct the divergence

V-v=

EQH_ dy + 0z
_ v Oy | Ov.
- Oz dy 0z

or. or._. oT, . N s
— g+ —2)] (va&+v,§+v,2)

The Meaning of Divergence

(6.20)

(6.21)

The Geometrical Interpretation of the Divergence

question

The divergence is a measure of how much the vector v spreads out (diverges) from the point in
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Figure 6.2: Divergence of vector fields

6.1.3 Curl
The Cross Prudct of Two Vectors

> Many problems in geometry require us to find a vector that is perpendicular to each of two given vectors
A and B. A routine way of doing this is provided by the cross product (or vector product) of A and B,
denoted by A x B. This cross product is very different from the dot product A - B, because A x Bis a
vector while A - B is a scalar.

Consider two nonzero vectors A and B. Suppose their tails conincide and let § be the angle from A to B
(not from B to A) with0 < 0 < 7.

A
Ax B
A
n
Bg |A x B]
T B

Figure 6.3: The plane defined by A and B

These 2 vectors determine a plane, as shown in Fig. 6.3. We now choose the unit vector n which is normal
(perpendicular) to this plane and whose direction is determined by the right-hand thumb rule®. This gives
the direction of A x B

Vectors A and B also defines a parallelogram in this plane of area | A||B|sin ¢, which defines the magni-
tude of A x B.

Definition 26: Cross Product of A and B

A x B = |A||B|sind (6.22)

Our next objective is to develop a convenient formula for calculating A x B where

A=a1t+axj+ask and B =bi+byj+ bsk (6.23)

We need to know that the cross product possesses the following algebraic properties

5Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 640
6This means that if the right hand is placed so that the thumb is perpendicular to the plane of A and B and the fingers curl from
A to B in the direction of angle 6, then n points in the same direction as the thumb of this hand
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(cA) x B=¢(A x B) = A x (¢B), (6.24)
Ax(B+C)=AxB+AxC, (6.25)
(A+B)xC=AxC+BxC (6.26)

Property 6.24, also called homogeneous in each argument’, is easily established directly from Defini-
tion 26.

The proof of Eq. 6.25 starts with a unit vector # and 3 arbitrary vectors B, C,and B + C. fi x (B + C)
can be constructed by performing the following two operations:

g

28]

[}
1
i
1
1
1
1
1
1
1

1. Project B, C,and (B + C) onto the plane perpendicular to # to obtain avector B/, C’,and (B + C)".
By the nature of projection, the head and tails of B’, C’, and (B + C)’ still coincide. Then,

2. rotate the triangle formed by B’, C’, and (B + C)’ by 90 degrees counterclockwise with respect to
the tail of # to obtain B”, C”, and (B + C)”, which still form a triangle.

Therefore, we have

(B +C)// — B// +C//

What this means is, geometrically, the operation of i x (B + C) and i x B + 71 x C produces the same
result, i.e. the vector (B + C)". Therefore

nx(B+C)=nxB+naxC

Now let
A =cn (6.27)
We will then have
%AX(B+C):%AXB+%A><C
ending up with the original fFormula of

Ax(B+C)=AxB+AxC

"Cross product, Wikiversity
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Eq. 6.26 follows from Eq 6.25 combined with the corollary of
AxB=-BxA (6.28)
(A+B)xC=—-[C x (A+ B)]
=—(CxA+CxB)

=-CxA-CxB
=AxC+BxC

8

We continue with our task of multiplying out the cross product of the vectors using Eq. 6.24, 6.25, and
6.26. By substituting byz + bo7 + b3k with B:

A X B = (a13 + as] + agk) x (b1i + bsJ + bsk) (6.29)
= (a1t + a2] + ask) x B (6.30)
:al;le—&—agij—i—agfch (6.31)
= a1t X (b12 + boj + bsk) + az] x (b1 + baj + bsk) + ask x (b12 + by + bsk) (6.32)

= a1bit X &+ arbat X J + aibsi x k + azbiJ X &+ asboj x J + asbsj x k + azbik x i + azbok >Ej'+)a3b312: x k
6.33

with the following corollaries,

ix1=0 (6.34)
3x3=0 (6.35)
kExk=0 (6.36)
ixj=—-3x1=k (6.37)
Jxk=-kxj=1 (6.38)
kxi=—-ixk=] (6.39)
(6.40)
Eq. 6.33 simplifies down to
A X B = aibok — aibsj — agbi k + agbst + asbrj — asbyt (6.41)
= (azbs — azba)t — (a1bs — azbi)j + (a1bs — asbi)k (6.42)
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We recall that a determinant of order 2 is defined by

G192 by — aghy (6.43)
by by

A determinant of order 3 can be defined in terms of determinants of order 2 as

a1 a2 as

b1 bg bg = ax iz i3 — ag lc)l 123 —|—a3 il lC)Q (644)

1 ¢ e 2 3 1 3 1 2

Eq. 6.42 is equivalent to
__|a2 a3 s a; ag| - ay a2 s
AXxB= by b by by J by by k (6.45)
=lay as as (6.46)
by b2 b3

It should be noted that formula 6.46 is by no means a definition of cross product, because obtaining
it must assume the distributivity law 2. We should view 6.46 simply as a convenient tool for making

calculations

In addition, Definition like 26 that avoid dependence on explicit representations of vectors in terms
of any particular coordinate system are called invariant or coordinate-free. 6.46 doesn't preserve
such invariant because it assumes a Cartesian space®

9The determinant pre-assumes the distributivity of cross product
bCross product, Wikiversity

Curl

8 From Eq. 6.46 we construct the curl:

T g Zz
Vxv=|g & & (6.47)
Up Uy U
Ov, Ovy\ . ovy, Ov, \ . Ovy  Ovg )\ .
= - = - - - = 6.48
(3y 82)w+<32 8x)y+(8x 5‘y>z (6.48)

The Geometrical Interpretation of the Divergence

The curl is a measure of how much the vector v “curls around” the point in question

8Introduction to Electrodynamics by Griffiths, 3rd, p. 19
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Figure 6.4: Curl of vector fields

6.1.4 Line Integrals

° Throughout our discussion we assime that the functions under discussion have all the continuity and
differentiability properties that are needed in any given situation

If a charge is moving in an electromagnetic field with a constant force F (constant in both direction and
magnitude), then we know that the work done by this force is the product of the component of F in the
direction of motion and the distance the charged particle moves, i.e.

W=F-AR (6.49)

where R is the vector from the initial position of the particle to its final position. Now suppose that F is
not constant, but instead is a vector function that varies from point to pint throughout a certain region
of the plane, say

F = F(x,y) = M(z,y)i + N(z,9)] (6.50)

GEEEEEEEEEEEEE NSNS NSNS E NN NN NN NN SN NN NSNS E NSNS NN NN NN NN EE NN SN EEEEEEEEEEEY

< LS

The vector-value function 6.50 is usually called force field. More generally, a vector field in the
planeis any vector-valued function that associates a vector with each point (z, y) in a certain plane
region R. In this context a function whose values are numbers (scalars) is called a scalar field.
Every scalar field f(x,y) gives rise to a corresponding vector field

Vi(z,y) = a—xi—l— —q (6.51)

This is called the gradient field of f. Some vector fields are gradient fields, but most are not.
Those gradient fields, however, are of special importance

¢UINENNNNNNENEEENNNEEEEEEN,
sunsnsnEEEEEEEEEEmEmEmEn®

4 NN NN NN SN NN NN SN NN NN EEEEEEEEEEEEEEEEEEEEEE NN NN NN NN NN EEEEEEEEEEEEEEEEER®

Suppose also that this variable force pushes the charged particle along a smooth curve C with a paramet-
ric equations

r=x(t) and y=y(t), t <t<t? (6.52)

The work done by this force is denoted by

/F-dR or /M(x,y)dﬂc—FN(a:,y)dy (6.53)
c c

%Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 751
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( v/
i@ This is called the line integral

We approximate the curve by a polygonal path as shownin Fig. 6.5. Thatis, choose points Py = A, P, P, ..., P,_1, P, =
B along C in this order; let R; be the position vector of P, and define the n incremental vectors by
ARy :Rk+1 —Rk,wherekzo,l,...,n—l

VY P/JS\_?\_/B
Ph=A
Figure 6.5: Approximating line integral

If we denote by Fj, the value of the vector function F' at P, and form the sum

n—1

Z Fy, - ARy (6.54)

k=0

then the line integral of F along C is defined to be the limit of sums

n—1

/F-dR: limZFk-ARk (6.55)
¢ k=0

ARLLLLLLLLLLLLEL L L L L L L L L L L L L L L L LLLLLLLY N

9 |t will often be necessary to consider situations in which th path of integration C'is a closed
curve. In this case a line integral is usually written with a small circle on the integral sign, as in

]{F~dR
@

9Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 757

¢UINENNENNNEEEEEENEN,
QuEEEEEEEEEEEEEER?®
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The Fundamental Theorem of Calculus

0we intuitively know that the definite integral of a continuous function is the limit of approximating
sums, i.e.

maxAzk—0

b n
/ fayde = lim S fai)Ax (6.56)
a k=1

The definite integral which is defined here is often called the Riemann integral, in honor of the 19th-
centry German mathematician who was the first to give a careful discussion of integrals of discontinuous
functions™

Eq. 6.56 immediately proves the following properties of definite integral'?:

10Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 206
11 Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 202
12 Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 214
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bt

/ " flaeyde = - |t

/abcf(x)dx = c/abf(x)dx

/ab[f(x) + g(x)|dz = /ab f(x)dx + ./abg(:r)dz

b b
if f(z) < g(x) on[a,b], then /f(x)dxg/ g(z)dz

/abf(x)d:r, = /acf(x)dm/cbf(x)dx

This definition works for integrals of rather simple functions such as

b 2
b

/xdw:—
0 2

but not for such complicate integrals as

1 4
/ T
o (7T+x%)3

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

The Fundamental Theorem of Calculus links the concept of differentiating a function with the concept of
integrating a function, showing that | these two operations are essentially inverse of one another . Be-

fore the discover of this theorem, however, it was not recognized that these two operations were related.
Ancient Greek mathematicians knew how to compute area via infinitesimals, an operation that we would
now call integration. The origins of differentiation likewise predate the fundamental theorem of calcu-
lus by hundreds of years. The historical relevance of the fundamental theorem of calculus is not the
ability to calculate these operations, but the realization that the two seeminly distinct operations

are actually closely related

( )
Theorem 5 (The First Fundamental Theorem of Calculus)
Let f be a continuous real-valued function defined ona closed interval [a, b]. Let F' be the function
defined, for all z in [a, b], by
F(z) = / Cf()dt (6.62)
Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b) and
Fl(z) = f(=) (6.63)
forallz in (a,b) so F is an antiderivative of f
. J
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Proof of Theorem 5 '3 For a given function £, define the function F(z) as

- / " Ftyat

For any two number z; and z; + Az in [a, b], we have

z1+Az x1

Flay + Az) — F(zy) = / F(t)dt — / F(t)dt (6.64)
aa:1+Aw aa

— / f(t)dt + / f(t)dt (by Eq. 6.57) (6.65)
aml—i-Aa: Il

_ / F(t)dt (by Eq. 6.61) (6.66)

To be able to go any further, we shall introduce the Mean value theorem for definite integrals

4 N\
Theorem 6 (Mean Value Theorem For Definite Integrals)

If f : [a,b] — Ris continuous and g is an integrable function that does not change sign on [a, b],
then there exists cin (a, b) such that

Proof suppose f : [a,b] — R is continuous and g is a non-negative integrable function on [a, b].
By the extreme value theorem, there exists m and M such that for each zin [a,b], m < f(z) < M
and f[a, b] = [m, M]. Since g is non-negative,

/ x)dr < / f(2)g(z)dx < M/bg(m)dx (6.68)
IFg(z) =0,
0< / el < (6.69)
/ F(@)g(@)dz =0 (6.70)
so foranyc € [a, b]
b b
[ @)z = ) [ g()iz =0 (6.71)
IFg(z) # 0,
1 b
L ——— x)g(x)dx < M (6.72)
e | r@ta)

By the intermediate value theorem, f attains very value of the interval [m, M] so for some cin
[a, b:

13Proof of the first part, Fundamental theorem of calculus, Wikipedia
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1 b
1O = / f(@)g(x)de

that is,

1) / gl — / ’ fe)a(e)d

Finally, if g is negative on [a, b], we can still get the same result.

(6.73)

(6.74)

\ Y,
By having g(z) = 1 in mean value theorem for integration, we have
b
[ e = 00 (6.75)
We can now move on with Eq. 6.66. There exists a real number ¢ € [z1, 21 + Axz] such that
x1+Ax
F(z1 4+ Az) — F(x1) = / ft)dt = f(e)Ax (6.76)
so
F(xy + Az) — F(xy)
A = f(c) (6.77)
. F(z1+4+ Azx) — F(xq)
Alalgrgo Az N Alolero f(e) (6.78)
that is,

Corollary 1: Corollary of Theorem 5

b
/ F(®)dt = F(b) — F(a)

in Theorem 7

If fis a real-valued continuous function on [a, b] and F' an antiderivative of f in [a, b], then

Note that the corollary assumes continuity on the whole interval. This resultis strenghened slightly

(6.80)

Proof of Corollary 1 '

1> Suppose F is an antiderivative of f, which is continuous on [a, b]. Let G(z) also be an antiderivative of

f:

14

15Proof of the corollary, Fundamental theorem of calculus, Wikipedia

57


https://github.com/QubitPi/general-relativity
https://qubitpi.org/
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Corollary
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus#Proof_of_the_corollary

Ol St -G gt Ry o=

Gla) = / Ft)dt (6.81)
By Theorem 6, we have
F'(z) = f(z) (6.82)
G'(z) = f(x) (6.83)
It is easy to see then
F-G=c (6.84)
where cis a constant. That is, there is a number ¢ such that
G(z)=F(z) +c (6.85)
forall z € [a, D]
Let z = a, we have
F(a)+c=G(a) = / f®dt=0 (6.86)
which means
c=—F(a) (6.87)
or
G(z) = F(z) — F(a) (6.88)
Therefore
b
/ F(B)dt = G(b) = F(b) — F(a) (6.89)
e N

Theorem)

which is an antiderivative of f in (a,b):

Theorem 7 (The Second Fundamental Theorem of Calculus: Newton-Leibniz

Let f be a real-valued function on a closed interval [a,b] and F' a continuous function on [a, b]

(6.90)
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If f is Riemann integrable on [a, b], then

b
/ f(z)dz = F(b) — F(a) (6.91)

Here we do not assume f is continuous
. y,

Proof of Theorem 7 "6 Let f be Riemann integrable on [a, b] and let f admit an antiderivative F on (a, b)
such that F'is continuous on [a, b].

Begin with the quantity F(b) — F(a). Let there be numbers zy, ..., z,, such that

=20 < T <T2<...<Tp1 < Tp=2>= (6.92)

If follows that

F(b) — F(a) = F(zn) — F(x0) (6.93)

Now, we add each F'(z;) along with its additive inverse, so that the resulting quantity is equal:

F(b) — F(a) (6.94)
=F(zn) + [-F(®p_1+ F(xn_1)]+... + [-F(z1 + F(z1)] — F(x0) (6.95)
= [F(2n) — Fan-1)] + [F(zn-1) = F(@n—2)] + ... + [F(22) — F(z1)] + [F(21) — F(20)] (6.96)
= ) [F(z;) — F(zi-1)] (6.97)

=1

Since Fis differentiable on interval (a, ) and continuous on [a, b], it is also differentiable on each interval
(z;—1,x;) and continuous on each interval [z;_1,z;]. According to the Mean Value Theorem, for each ¢
there exists a ¢; in (z;_1, z;) such that

F(x;) — F(xi—1) = F'(¢i) (@ — x5-1) (6.98)
Plugging this equation into Eq. 6.97, we get

n

F(b) = F(a) =) [F'(ci)(wi —i-1)] = ) [f(ei)Ax;] (6.99)

=1 i=1

We are describing the area of a rectangle, with the width times the height, and we are adding the areas
together. Each rectangle, by virtue of the Mean Value Theorem, describes an approximation of the curve
sectionitisdrawn over. Also Az; need not be the same for all values of ;. What we will do is to approximate
the curve with n rectangles. As the widths of the partitions get smaller and » increases, we get closer to
the actual areas

Since f is Riemann integrable:

16Proof of the second part, Fundamental theorem of calculus, Wikipedia
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HALiirF_}OF(b)—F =l IHOX; (i) A (6.100)
F(b) — F(a) = uAQﬂLoZ [f(ci) Az (6.101)

b
~ [ @)z (6.102)

Independence of Path & Conservative Fields

7 We have already known that the vector field is the gradient of a scalar field. The Fundamental Theorem
of Calculus of single-variable in the case of 2 variables can be derived as follows:

/CF-dR:/Vf-dR (6.103)

:/ (Vf dR) dt (6.104)

:/ [(8]” " A> _ d(xiﬁdi‘ yﬁ)} gt (6.105)

).

:/abjt [z y)dt (6.107)

=f(b) - f(a) (6.108)

4 )

Theorem 8 (Fundamental Theorem of Calculus for Line Integrals)

If a vector field F'is the gradient of some scalar field f in a region R, so that F = Vfin R, and if
C'is any piecewise smooth curve in R with initial and final points A and B, then

/ F-dR = f(B) - f(4) (6.109)
C

. J

The right side of the Eq. 6.109 depends only on the points A and B and not at all on the path C that joins
them. The line integral on the left side of Eq. 6.109 therefore has the same value for all paths C from A
to B. This can be expressed by saying that the line integral of a gradient field is independent of the path

?{F~dR:O (6.110)
C

17 Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 758
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These argument show that

Integral is independent of path

/
\

Integral around closed path is zero

Gradient field

Figure 6.6: The symbol = means “implies”

We are going to show that these 3 properties are equivalent, in the sense that each implies the other two.

Suppose that the line integral of the vector field F is independent of the path. We shall approve that the
line integral of the vector field F around a closed path is zero.

We examine the figure below, in which two points 4 and B are chosen on the closed path C. These points
divide C into paths C;, from A to B, and C5, from B to A.

Cl—)

<—CQ

Since both C; and —C, are paths from A to B, the assumption of independence of path implies that

F.dR—| F-dR——| F.dR (6.111)
C1q —Cs Cy

Eq. 6.57

It them follows that

F.dR + F.dR:ij-dR:o (6.112)
C

Cl C(2

Then we can easily reverse this argument to show that the integral from A to B is independent of the
path
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Integral is independent of path

/
\

Integral around closed path is zero

Gradient field

Figure 6.7: The updated Fig. 6.6

To complete the proof of the equivalence of the 3 properties, it suffices to show that if F' is a vector fioeld
whose line integral is independent of path, then F = V f for some scalar field f. To do this, we choose a
fixed point (z¢, y0) and an arbitrary point (x, y). Given any path from C from (zq, yo) to (x, y), because we
assume the hypothesis of independence of path, we can unambiguously define the function f(z,y) by

(z,y)
f(x,y):/F~dR=/ F.dR (6.113)
c (z0,y0)

0,Y0

(z,y)

(z0,%0)
F has the usual form of F = M(x,y)i + N(z,y)j so that

(=,y)
flz,y) = /( M(z,y)dx + N(z,y)dy (6.114)

Z0,Y0)

Let's first hold y fixed and move along the z-direction by Az. By The Fundamental Theorem of Calculus,
Eq 6.114 implies

(z4+Az,y)
f(a:JrAx,y)ff(x,y):/ Mdx (6.115)
(z,y)
SO
_ (z+Az,y)
Of _ \jm T+ 82y —F@y) _ i/ Mdz = M (6.116)
Ox Az—0 Ax Az—0 Ax (z,y)
Similarly
8—f =N (6.117)
dy
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axz ayj B

of . 3f.(3i+aj>fo]\/[i+NjF (6.118)
ox oy

Integral is independent of path
Gradient field

Integral around closed path is zero

Figure 6.8: The updated Fig. 6.7

A Force that has one of 3 properties above is called conservative.

6.1.5 Green's Theorem

| |

Green did not actually derive the form of “Green’s theorem” which appears in the form we see to-
day; rather, he derived a form of the “divergence theorem”, which appears on pages 10 - 12 of his
An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. A
proof of the theorem was finally provided in 1851 by Bernhard Riemann in his inaugural disserta-
tion: Bernhard Riemann (1851) Grundlagen fiir eine allgemeine Theorie der Functionen einer verdn-
derlichen complexen Grésse (Basis for a general theory of functions of a variable complex quantity),
(Gottingen, (Germany): Adalbert Rente, 1867); see pages 8 -9.¢

Having formulating the Riemannian Geometry, Riemann laid the foundations of the mathematics
of General Relativity®

Aseparate part has been dedicated to Riemannian Geometry which shallinclude the rigorous proof
of Green’s theorem

Given that, the purpose of this section is solely for revealing the nature of the link between line
integrals and double integrals¢

9Green’s theorem, Wikipedia
bBernhard Riemann, Wikipedia
¢Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 764

. J

Let’s look at a rectangular path like the one shown below
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j{Md:c—i-Ndy //[M ‘9M] (6.119)
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Chapter 7

Maxwell's Equations

Does the Electromagnetic Field physically exist?

“There exists a model of the universe which includes a field known as the Electromagnetic Field.
This model does a remarkably good job of predicting the observations we make in the world. It
does so good at making such predictions that it is often phrased as 'existing in the world"?

9https://philosophy.stackexchange.com/a/28010

7.1 Gauss's Law for Electic Fields

There are two kinds of electric field:
1. the electrostatic field produced by electric charge
2. the induced electric field produced by a changing magnetic field

Gauss's law for electric fields deals with the electrostatic field. It relates the spatial behavior of the elec-
trostatic field to the charge distribution that produces it. The integral form is generally written like this:

7.1.1 The Electric Field

To understand Gauss's law, we first have to understand the concept of the electric field. In some physics
and engineering books, no direct definition of the electric field is given; instead we see a statement that
an electric field is “said to exist” in any region in which electrical forces act. But what exactly is an electric
field? This question has deep philosophical significance and it is not easy to answer?. It traces all the way
back to a person named Michael Faraday who is believed to discover the concept of an electric field.

While Faraday did not develop a complete mathematical description of the electric field, his concept laid
the groundwork for later scientists to quantify the electric field using mathematical equations. The book
by Michael Faraday that introduced the concept of the electric field is called Experimental Researches in
Electricity, particularly in its Eleventh Series, a chapter of the book.

Faraday conducted an experiment using two long coils. Let’s call them coils A and B. Coil A was connected
to a battery source while coil B was connected to a falavanometer, which measures the current in B. He
discovered that, when coils were long enough and battery source was strong enough, the falavanometer

TFleisch, A Student’s Guide to Maxwell’s Equations, p. 3
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signaled a slight current passing through coil B at the moment of connecting coil A the battery. In addi-
tion, when coil A and the battery was disconnected , the same amount of currrent in coil B was detected
again, but this time the current was in the opposite direction.?

2 Experimental Researches In Electricity, Vol. 1, Faraday, Michael, 6 - 11
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Chapter 8

Euclid’'s Elements

’ /’ 3 \ \ ’ 3\ ~ ~ R ~ \ 3 ~
L. " HurjoOw amd mavtds onpelov émi mav onpelov edfetav ypapunv dyayeiv.
K \ ’ A ~ \ \ \ b3 ’ b ’, ) ~
2. Kaimemepaopévny edbeiav katd 76 ovvexés én’ edfelas éxPaleiv.
3. Kaimavtl kévrpw kai Staotipatt kiikdov ypddecbad.
4. Kaimdoas 7as épfas ywvias ioas aAA7jAass elvat.

AN y oh R ’ y ~ }) ’ \ ) \ A\ \ \ y \ /’ ’ ok y ~ }) /’ ~ ) /
5. Kaiéavels 8to edfelas edOeta éumimTovoa Tas évrds kal émi TG adTa puépn ywvias 8o 6p0dv éAdooovas moi), éxBaldouévas
\ ok y ’ b} y v ’ b) & ’ A\ [ ~ ok v ~ y ’
Tas Svo edbeias ém’ dmepov cvpminTew, ép’ & puepn elolv al T@v 8o 6pO8dv éddaooves.
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