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Special Relativity

3





Chapter 1

Einstein’s Original Paper on “Special
Relativity”

The source of this chapter is the original German version of Einstein’s paper on Special Rela-
tivity

It is not recommended to read English translations because many translators, thinking they
were smart enough, unethically tempered the original version dramatically, and thus dis-
guised the readersa

asource

Reading the original paper requires the prerequisites of

Michelson-Morley Experiment

– An excellent experiment intro

– What I caremost about this experiment is thewaywehandle ”unsolvable”problems. Michelson-
Morley experiment had led to extensive followups trying to explain what was seen in the ex-
periment. All the mediocre conclusion simply said: ”Dude, we don’t know.” Albert Einstein in-
novated a new era of Physics out of this conflict. When a problem seems to lead to a dead
end, it’s time to innovate; it’s time to take on the risk and bring the human into a newworld
of new opportunities!

Maxwell’s Electrodynamics

1.0.1 Reading Notes...

...of the Paper
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§1. Definition of Simultaneity

Definition 1: Simultaneity

If an event occurs at (t, x, y, z), then all observers would see this event at (t, x′, y′, z′), where x ̸= x′,
y ̸= y′, and y ̸= y′

For example, If I say that “a train arrives here at 7 o’clock,” that means when a clock on that train ticks to
7, my hand watch also points at 7 sharp. There is no “delay” caused by information propagation between
the train clock and my hand watch; they just happen to “synchronize” that way. We say the 7 on the hand
watch and the 7 on the train are simulaneous events

This definition is ideal when the clock and the attached event are located at the same place because we
can read the clock precisely at that location. But what if there are series of events at other locations and
we need to link them temporally? Can we simply tell which of the two events happened first simply by
comparing the time we see the incident light of the two events? No, because, as Einstein said, “such an
assignment has the drawback that it is not independent of the position of the observer”. For example,
suppose you are reading this PDF document at 9 am in themorning; 20minutes later your special appara-
tus on your desk detected the light of a collision of two stars in universe that happend 2 billion light years
away. In this case, can we say you saw this PDF file earlier than then star collsion?

What ismissinghere is theorderingofmultiple events. In otherwords, ifwe could somehow“synchronize”
the clock located at us, the PDF file, and the star collision, we will be able to say, by looking at all 3 clocks
synchronized, the star collision happened first.

Einstein offered an approch to synchronize the clocks in the followingway. He got inspired byDifferential
Geometry by realizing that the clockC1 of the event located at the vicinity of another clockC2 is infinites-
imally synchronized with clock C2. If there is a clock at point A of space, then an observer located at A
can evaluate the time of the events in the immediate vicinity of A by simply look at their hand watch. If
there is also a clock at pointB, then the time of the events in the immediate vicinity ofB can likewise be
evaluated by an observer located at B. But it is not possible to compare the time of an event at A with
one at B without a further stipulation; thus far we have only defined an ”A-time” and a ”B-time” but not
a ”time” common to A and B. The latter can now be determined by establishing by definition that the
”time” needed for the light to travel from A to B is equal to the ”time” it needs to travel from B to A.
Thus we have the following definition

Definition 2: Synchronism (Location-Independent)

Suppose a ray of light leaves from A toward B at “A-time” at tA, is reflected from B toward A at
“B-time” tB , and arrives back at A at “A-time” t′A. The two clocks are synchronous by defintion if

tB − tA = t′A − tB (1.1)

It follows naturally that

1. if the clock inB is synchronous with the clock inA, then the clock inA is synchronous with the clock
in B, and

2. if the clock in A is synchronous with the clock in B as well as with the clock in C, then the clocks in
B and C are also synchronous relative to each other

This is a very powerful assertion, because it states that for 2 clocks to be “synchronous”, not only do they
need to be ticking at the same rate, but also they must always be pointing at the exact same absolute
instance of time, i.e. both must be both ticking at 9:00:00 am sharp, not one at 9:00:00 and the other at
9:00:03. Another example is that two clocks at Chicago and New York City are never synchronous.
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Applying this Def. 2, we are able to solve the PDF-collision problem. Since the PDF and us are in pretty
much vicinity of each other, we can approximate the two to be synchronous with each other. To syn-
chronize with the star collison, our watch will need to “move backwards” in time by little more than 2
billion years. According to the transitivity law of Synchronism, the clocks of PDF and the collision are new
synchronized. The ordering of the events should be pretty clear now.

The speed of light as a universal constant in empty space is thus:

V =
2AB

t′A − tA
(1.2)

! and there is a BIG assumption: all clocks are at rest in a system at rest

With that, we have a pretty good mechanism to talk about series of events in a system happening at

different time, because we know how to synchronize them

§2. Something Stops Working…

Principle of Relativity

The laws governing the changes of the state of any physical system do not depend on which one
of two coordinate systems in uniform translational motion relative to each other these changes of
the state are referred to

Principle of the Constancy of the Velocity of Light

Each ray of lightmoves in the coordinate system “at rest” with the definite velocity V independent
of whether this ray of light is emitted by a body at rest or a body in motion

2 principles above along with the Def.2 shall present us an surprising result that a moving rod with a
stationary length rAB will be measured to have a different length measured by an moving observer

7
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Suppose the rod is moving in the x-direction at a constant speed v. Let the length of the moving
rod, measured in the system at rest, be denoted as rAB , whereA andB are the two ends of the rod.
In addition, we imagine that the two ends (A andB) of the rod are equippedwith clocks (C1 andC2)
that are synchronous with the clocks of the system at rest. Hence, C1 and C2 are synchronous for
the observer in the system at restwhose readings always correspond to the ”time of the system
at rest” at the

Classically

An observer co-moving with the rodmeasures
this stationary rod tohave a lengthof tB−tA =
t′A − tB = rAB

V , where V is the speed of light
and tB , tA, t

′
A, tB are all drawn from Def.2.

Another stationary observer, who sees the rod
moving, measures the length of the (moving)
rod seeen froma systemat rest. The light trav-
els, due toClassical Intertia, at a speedof v+V ,
relative to the observer. The observer see the
light reaches the other end of the rod at∆t =
tB− tA. The light ends up travelling a distance
of (v + V )∆t; this distance must also equal to
the sum of the stationary rod length plus the
extra distance that the rod travels:

(v + V )∆t = rAB + v∆t (1.3)

Thus

tB − tA =
rAB

V
(1.4)

When the light reflects back:

(V − v)∆t = v∆t− rAB (1.5)

t′A − tB =
rAB

V
(1.6)

Therefore

tB − tA = t′A − tB (1.7)

Relativistically

An observer co-moving with the rodmeasures
this stationary rod tohave a lengthof tB−tA =
t′A − tB = rAB

V , where V is the speed of light
and tB , tA, t

′
A, tB are all drawn from Def.2.

Another stationary observer, who sees the rod
moving, measures the length of the (moving)
rod seeen froma systemat rest. The light trav-
els, by the Principle of the Constant Speed of
Light, at a speed of V , relative to the observer.
The observer see the light reaches the other
end of the rod at∆t = tB − tA. The light ends
up travelling a distance of V∆t; this distance
must also equal to the sum of the stationary
rod length plus the extra distance that the rod
travels:

V∆t = rAB + v∆t (1.8)

Thus

tB − tA =
rAB

V − v
(1.9)

When the light reflects back:

V∆t = v∆t− rAB (1.10)

t′A − tB =
rAB

V + v
(1.11)

Therefore

tB − tA ̸= t′A − tB (1.12)

Note that neither Eq.1.9 nor Eq.1.11 is related to the time = distance
speed . The numerators of both equations

are NOT the distance traveled and the denominator is NOT the speed of the travel
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we have a contradiction

Now, let’s further imagine that each clock of C1 and C2 has an observer co-moving with it, and that
these observers apply to the two clocks the criterion for synchronism formulated in Def 2. Classi-
cally, both observer co-moving with the moving rod and the observer in the system at rest declare
C1 and C2 to be synchronous

tB − tA = t′A − tB (1.13)

Relativisically, however, observer co-moving with the moving rod, By Def. 2, finds C1 and C2 do not
run synchronously

tB − tA ̸= t′A − tB (1.14)

while the observer in the system at rest declare them synchronous, in this case

How do we resolve the contradiction?

There is No Absolute Simultaneity
Instead, two events that are simultaneouswhen observed from someparticular coordinate system
can no longer be considered simultaneous when observed from a system that is moving relative
to that system

The fact that is no absolute conformance in simultaneity indicates that there must be some form of trans-
formation where two simultaneous events are transformed to be simultaneous in another system. The next
section explore this transformation which is famously called the “Lorentz transformation”

§3. Lorentz Transformation - Quantifying Non-Simultaneity

Let’s imagine there are 2 coordinate systems,K and k, both “at rest” in their own right. Now let
system k start moving in the increasing x-direction relative toK with a speed of v. Let’s further
image that K and k are contained within a “larger” coordinate system or space called S, where
S ̸= K ̸= k. We now imagine the space S to be measured both from

the systemK at rest by means of the measuring rod at rest; the measurement is obtained
as (x, y, z), and

themoving system k bymeansof themeasuring rodmovingalongwith it; themeasurement
is obtained as (ξ, η, ζ)

In the setup above, we assign a measuring rod to both K and k. Further, all clocks in K are
synchronized to have a time t and all clocks in k are also synchronized to have a time τ
For every event (x, y, z, t) measured in the system K at rest, there corresponds to a “fixed” or
transformed event (ξ, η, ζ, τ ) measured in the system k. Our target is to derive the relation be-
tweenK(x, y, z, t) and k(ξ, η, ζ, τ )

In this setup, let’s talk about how observer k measures things in K. Suppose there is a point at rest in
K : (x, y, z). Let’s denote this point measured from within system k as k : (x′, y′, z′).

!
We will assume that the origins of k andK coincide initiallya. That is at t0 = 0, x = x′

aThe Collected Papers of Albert Einstein, Vol.2, page 149

After some time t, sinceK is effectively moving to in the negative x-direciton relative to k, observer in k
will now see this event further to the left, i.e. the coordinate of this event now becomes
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x′ = x+ c− vt = x− vt (1.15)

c = 0 because of the assumption we have made. Eq. 1.15 allow us to link systems k andK by a common
attribute - x′. So let’s start from here.

Looking at k only

Suppose that at time τ0 a light ray is sent from the origin of the system k along the x-axis to x′ and
is reflected from there at time τ1 toward the origin, where it arrives at time τ2; we then must have

τ2 − τ1 = τ1 − τ0

1

2
(τ0 + τ2) = τ1 (1.16)

Since it is also true that τ2 = τ0+
x′

V − v︸ ︷︷ ︸
Eq. 1.9

+
x′

V + v︸ ︷︷ ︸
Eq. 1.11

, by writing out the parameters of τ in Eq.1.16, we

have the following general equation of

1

2

[
τ(0, 0, 0, t) + τ

(
0, 0, 0, τ0 +

x′

V − v
+

x′

V + v

)]
= τ

(
x′, 0, 0, t+

x′

V − v

)
(1.17)

Taking the derivative of τ with respect to x′ and applying the Chain Rule of

∂τ

∂x′ =
∂τ

∂t

∂t

∂x′

give us

1

2

∂τ

∂t

[
1

V − v
+

1

V + v

]
=

∂τ

∂x′ +

(
1

V − v

)
∂τ

∂t
(1.18)

which simplifies down to

∂τ

∂x′ +
v

V 2 − v2
∂τ

∂t
= 0 (1.19)

It should be noted that L = ∂
∂x′ +

v
V 2−v2

∂
∂t is a Linear operator

a because

L (τ1 + τ2) =
∂(τ1 + τ2)

∂x′ +
v

V 2 − v2
∂(τ1 + τ2)

∂t
(1.20)

=
∂τ1
∂x′ +

∂τ2
∂x′ +

v

V 2 − v2
∂τ1
∂t

+
v

V 2 − v2
∂τ2
∂t

(1.21)

= L (τ1) + L (τ2) (1.22)

and

L (cτ) =
∂cτ

∂x′ +
v

V 2 − v2
∂cτ

∂t
= c

(
∂τ

∂x′ +
v

V 2 − v2
∂τ

∂t

)
= cL (τ) (1.23)

Therefore Eq.1.19 has a solution of the formb
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τ = f

(
v

V 2 − v2
x− t

)
(1.24)

We shall declare that

τ = f

(
v

V 2 − v2
x′ − t

)
︸ ︷︷ ︸

Mathematics

= φ(v)

(
t− v

V 2 − v2
x′
)

︸ ︷︷ ︸
Physics

(1.25)

which assumes that transformation between τ and t must be linear which can be inferred by the
following fundamental postulatec:

Space and time are homogeneousa

aWhat proof do we have that the universe is homogenous? In physics we can’t prove something like this. It must
be a postulate - something we take as a fundamental assumption on which to base our theories. If the assumption
is wrong then eventually we will find experimental evidence of this. What we can say is that currently there is no
evidence for any lack of homegeneity or isotropy in the universe.

With Eq.1.25, we shall deduct the first 3 positional transformations in (ξ, η, ζ, τ ). For a light ray
emitted at time τ = 0 in the direction of increasing ξ, we have

ξ = V τ = V φ(v)

(
t− v

V 2 − v2
x′
)

(1.26)

which, combined with Eq.1.9, gives

ξ = φ(v)

(
V 2

V 2 − v2

)
x′ (1.27)

Analogously, by considering light rays moving along the two other moving axes while k is still
moving in the x-direction:

η = V φ(v)
(
t− v

V 2−v2x
′
)

y2 + (vt)2 = (V t)2

x′ = 0

⇒ η = φ(v)
V√

V 2 − v2
y (1.28)


ζ = V φ(v)

(
t− v

V 2−v2x
′
)

z2 + (vt)2 = (V t)2

x′ = 0

⇒ ζ = φ(v)
V√

V 2 − v2
z (1.29)

Note that Eq.1.27, 1.28, and 1.29 are based on the assumption that k starts out at the same point
ofK ’s origin

aSee Partial Differential Equations, Strauss, page 2 for definition of Linearity
bSee Partial Differential Equations, Strauss, page 6
cIn a1964 paper, Erik Christopher Zeeman showed that the Lorentz transformation can be proven by applying the ho-

mogeneity principle to equations that represent the corresponding quantities at rest. This shows that the Lorentz trans-
formation must be linear in both space and time coordinates

Now let’s bridge k andK with Eq. 1.15 by plugging it into Eq. 1.25, 1.27, 1.28, 1.29:
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τ = φ(v)

[
t− v

V 2 − v2
(x− vt)

]
(1.30)

= φ(v)

(
V 2t− v2t− vx+ v2t

V 2 − v2

)
(1.31)

= φ(v)

(
V 2t− vx

V 2 − v2

)
(1.32)

= φ(v)
V 2

V 2 − v2

(
t− v

V 2
x
)

(1.33)

ξ = φ(v)

(
V 2

V 2 − v2

)
(x− vt) (1.34)

η = φ(v)
V√

V 2 − v2
y (1.35)

ζ = φ(v)
V√

V 2 − v2
z (1.36)

(1.37)

It does not lose generality to say if k is moving relative toK at speed v thenK is moving relative to k at
speed −v. Directly measuring coordinates inK is effectively the same thing as transforming (x, y, z, t) in
K to (ξ, η, ζ, τ ) and then back to (x, y, z, t) so we have along the x-axis:

x = φ(−v)
(

V 2

V 2 − v2

)
φ(v)

(
V 2

V 2 − v2

)
x = φ(v)φ(−v)

(
V 2

V 2 − v2

)2

x (1.38)

where v is the speed ofK relative toK, which is clearly 0. Therefore

x = φ(v)φ(−v)
(

V 2

V 2 − 02

)2

x = φ(v)φ(−v)x (1.39)

which leads to the identity transformation of

φ(v)φ(−v) = 1 (1.40)

Let’s place a rod of length l at the origin of k perpendicular to ξ-axis. If k is moving to the x-direction
relative toK at speed v, the measurement of the rod length, which we denote y1, inK satisfy

l = φ(v)
V√

V 2 − v2
y1 (1.41)

By symmetry

l = φ(−v) V√
V 2 − v2

y1 (1.42)

φ(v) = φ(−v) (1.43)

Combining 1.43 and 1.40 leads to

φ(v) = ±1 (1.44)

12

https://github.com/QubitPi/general-relativity
https://qubitpi.org/


Study Notes General Relativity QubitPi
By definition we know l > 0, y1 > 0, and V > 0, therefore,

φ(v) = 1 (1.45)

Since we focus on the x-direction only, it is our intuition that nothing shall change in y or z direction, i.e.

η = y (1.46)

ζ = z (1.47)

Given that Eq. 1.25, 1.27, 1.28, 1.29 becomes

τ = t− v

V 2 − v2
x′ (1.48)

ξ =

(
V 2

V 2 − v2

)
x′ (1.49)
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Chapter 2

Special Relativity

2.1 Fundamental principles of special relativity theory (SR)

2.1.1 On “Principle of relativity (Galileo)”

Galilean invariance

Newton’s laws of motion hold in all frames related to one another by a Galilean transformation. In other
words, all frames related to one another by such a transformation are inertial (meaning, Newton’s equa-
tion of motion is valid in these frames).1 The proof has been given by the book on page 2.

2.2 Construction of the coordinates used by another observer

2.2.1 Why would the tangent of the angle is the speed in Fig. 1.2?

Suppose O and Ō both start out at the same position where Ō moves along the x at some speed. After
t1, observerO sees Ō at position x1:

Ō1 = (x1, t1)

Observer Ō, however, still sees themself at x = 0:

Ō1 = (0, t1)

By definition where “t̄ is the locus of events at constant x̄ = 0”, t̄ is the straight line that passes the origin
and the (x1, t1):

1Galilean invariance
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x

t

Ō0,O0

t̄

x1

t1
(x1, t1)

Tangent of this angle is v̄

2.3 Invariance of the interval

Why (∆x)2 + (∆y)2 + (∆z)2 − (∆t)2 = 0 for two events in the same light beam?

Let’s say, in a simplified 1D case, event E = (x0, t0) and P = (x1, t1).

(∆x)2 − (∆t)2 = (x1 − x0)
2 − (t1 − t0)

2

Since the speed of light is 1,

(x1 − x0)
2 − (t1 − t0)

2 = (x1 − x0)
2 − (t1 × 1− t0 × 1)2 = (x1 − x0)

2 − (x1 − x0)
2 = 0

Why does the equation contains onlyMαβ +Mβα terms when
α ̸= β, which guaranteesMαβ = Mβα?

∆s̄2 =

3∑
α=0

3∑
β=0

Mαβ (∆xα)
(
∆xβ

)

Before spending too much time on expanding the equation, we can pick up a pair of indices of (α, β) =
(α∗, β∗)where α∗ ̸= β∗. Then we would definitely have the following 2 terms in the expansion:
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Mα∗β∗

(
∆xα∗

)(
∆xβ∗

)
Mβ∗α∗

(
∆xβ∗

)(
∆xα∗

)
Since

(
∆xα∗

)(
∆xβ∗

)
=
(
∆xβ∗

)(
∆xα∗

)
We can then group these 2 terms and factor out the product, leaving

(
∆xα∗

)(
∆xβ∗

)
(Mα∗β∗ +Mβ∗α∗)

The terms of expanded∆s̄2 can be expressed in a matrix of



M00∆x0∆x0 M01∆x0∆x1 M02∆x0∆x2 M03∆x0∆x3

M10∆x1∆x0 M11∆x1∆x1 M12∆x1∆x2 M13∆x1∆x3

M20∆x2∆x0 M21∆x2∆x1 M22∆x2∆x2 M23∆x2∆x3

M30∆x3∆x0 M31∆x3∆x1 M32∆x3∆x2 M33∆x3∆x3


Because the off-diagonal terms always appear in pairs above, we could effectively replace themwith their
mean value:

Mα∗β∗ = Mβ∗α∗ =
(Mα∗β∗ +Mβ∗α∗)

2

where α∗ ̸= β∗. And sinceMαβ = Mβα if α = β, we conclude that

Mαβ = Mβα for all α and β

Why do we have the 2nd term in equation

∆s̄2 = M00 (∆r)
2
+ 2

(
3∑

i=1

M0i∆xi

)
∆r +

3∑
i=1

3∑
i=1

M ij∆xi∆xj
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∆s̄2 =

3∑
α=0

3∑
β=0

Mαβ (∆xα)
(
∆xβ

)
(2.1)

=

0∑
α=0

3∑
β=0

Mαβ (∆xα)
(
∆xβ

)
+

3∑
α=0

0∑
β=0

Mαβ (∆xα)
(
∆xβ

)
+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.2)

=

3∑
β=0

M0β∆t
(
∆xβ

)
+

3∑
α=0

Mα0 (∆xα)∆t+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.3)

= M00 (∆t)
2
+

3∑
β=1

M0β∆t
(
∆xβ

)
+

3∑
α=1

Mα0 (∆xα)∆t+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.4)

= M00 (∆t)
2
+ 2

[
3∑

i=1

M0i∆t
(
∆xi

)]
+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.5)

Why wouldM0i = 0 for i = 1, 2, 3 andM ij = −M00δij in Equation 2.5?

The answer is: not necessarily. We are probably looking at a wrong problem.

The solution to exercise 1.8 takes ∆x1 = −∆x2 to simplify the equation 2.10. This is not
sufficient, because what if ∆x1 ̸= −∆x2? This box takes a general approach where we do
not assume any relationship between∆x1 and∆x2

Note that this statement is based on the aforementioned assumption that∆s̄2 = ∆s2 = 0, which
has been proved here. Therefore, by 2.5, we have

∆s̄2(∆t,∆x1)−∆s̄2(∆t,∆x2) (2.6)

= M00 (∆t)
2
+ 2

[
3∑

i=1

M0i∆t
(
∆xi

)]
+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.7)

= 2

[
3∑

i=1

M0i∆t
(
∆xi

1

)]
+

3∑
α=1

3∑
β=1

Mαβ (∆xα
1 )
(
∆xβ

1

)
−

2

[
3∑

i=1

M0i∆t
(
∆xi

2

)]
−

3∑
α=1

3∑
β=1

Mαβ (∆xα
2 )
(
∆xβ

2

)
(2.8)

=

3∑
α=1

3∑
β=1

Mαβ (∆xα
1 )
(
∆xβ

1

)
−

3∑
α=1

3∑
β=1

Mαβ (∆xα
2 )
(
∆xβ

2

)
+

2

[
3∑

i=1

M0i∆t
(
∆xi

1

)]
− 2

[
3∑

i=1

M0i∆t
(
∆xi

2

)]
(2.9)

=

3∑
α=1

3∑
β=1

Mαβ

[
(∆xα

1 )
(
∆xβ

1

)
− (∆xα

2 )
(
∆xβ

2

)]
+ 2

[
3∑

i=1

M0i∆t
(
∆xi

1 −∆xi
2

)]
= 0 (2.10)

We won’t be able to go further unless with some assumed relationships between ∆xi
1 and ∆xi

2.
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But since we do not assume any relations between them…

…let’s step back and re-think about this problem then and forget about∆xi
1 and∆xi

2.

We go through all these for the proof of invariance of the interval. This is to work out a relation
between∆s2 and∆s̄2. The detail is about∆xi

1 and∆xi
2 but the goal is to derive some form

of

∆s̄2 = f
(
∆s2

)
=

3∑
α=0

3∑
β=0

Mαβ (∆xα)
(
∆xβ

)
where

∆s2 = −(∆t)2 +

3∑
i=1

(∆xi)2

Let’s work on f
(
∆s2

)
directly toward that goal then

Assuming∆s̄2 = ∆s2 = 0, we have∆t = ±∆x; plugging it into Eq. 2.5 gives us

∆s̄2 = M00

3∑
i=1

(
∆xi

)2
+ 2

[
3∑

i=1

M0i

(
∆xi

)2]
+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.11)

= (M00 + 2M0i)

3∑
i=1

(
∆xi

)2
+

3∑
α=1

3∑
β=1

Mαβ (∆xα)
(
∆xβ

)
(2.12)

Eq.2.12 seems to suggest a linear relationship between ∆s2 and ∆s̄2. How do we go about proving it? We
now start the formal proof of Invariance of Interval

Theorem 1 (Proportionality of ds2 and ds′2)

Let n, p ≥ 1 be integers, d := n + p and V a vector space over R of dimension d. Let h be an
indefinite-inner product on V with signature type (n, p). Suppose g is a symmetric bilinear form
on V such that the null set of the associated quadratic form of h is contained in that of g (i.e.
suppose that for every v ∈ V , if h(v, v) = 0 then g(v, v) = 0). Then, there exists a constant C ∈ R
such that g = Ch. Futhermore, if we assume n ̸= p and that g also has signature type (n, p), then
we have C > 0

Prove the theorem

The assumptions above on h means that h : V × V → R is a bilinear form which is symmetric and non-
degenerate such that there exists an ordered basis {v1, . . . , vn,vn+1, . . . , vd} of V for which

h(va,vb) =


−1 a = b, where a, b ∈ {1, . . . , n}
1 a = b, where a, b ∈ {n+ 1, . . . , d}
0 otherwise

(2.13)
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An equivalent way of saying this is that h has thematrix representation

[
−In 0
0 Ip

]
relative to the ordered

basis {v1, . . . , vd} of V

If we are considering the special case where n = 1, p = 3 then we are talking about the situation of a
matrix signature in 4-dimensions
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Mathematics
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Chapter 3

Topology

Thenameof this division (“Topology”) is in honor of, frommy sincere respect, the great book
by George F. Simmons, Introduction to Topology and Functional Analysis

3.1 Metric Spaces

Definition 3: Metric Space

LetX be a non-empty set. Ametrica onX is a real function d of ordered pairs of elements ofX which
satisfies the following conditions

d(x, y) ≥ 0, and d(x, y) = 0 ⇐⇒ x = y

d(x, y) = d(y, x) (symmetry)

d(x, y) ≤ d(x, z) + d(z, y) (the triangle inequality)

aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.51

d(x, y) is called the distance between x and y. Thus a metric space consists of 2 objects:

1. a non-empty setX , and

2. a metric d onX

1 Now letX be a metric space with metric d, and let

{xn} = {x1, x2, · · · , xn, ·} (3.1)

be a sequence of points inX . We say that {xn} is convergent if there exists a point x inX such that either

1. for each ϵ > 0, there exists a positive integer n0 such that n ≥ n0 ⇒ d(xn, x) < ϵ, or, equivalently,

1Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.70
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2. for each open sphere Sϵ(x) centered on x, there exists a positive integer n0 such that xn is in Sϵ(x)

for all n ≥ n0

We say in this case that xn converges to x and x is called the limit of the sequence {xn} andwe sometimes
write xn → x in the form of

limxn = x

Now let’s consider two cases of convergence:

for each ϵ > 0, there exists a positive integer n0 such that n ≥ n0 ⇒ d(xn, x) < ϵ (the same definition
above)

for each ϵ > 0, there exists a positive integer n0 such thatm ≥ n0 ⇒ d(xm, x) < ϵ

By the symmetry and triangle inequality of the Def. 3:

d(xm, xn) ≤ d(xm, x) + d(x, xn) = d(xm, x) + d(xn, x) ≤
ϵ

2
+

ϵ

2
= ϵ (3.2)

for allm,n lgn0. Therefore, every convergent sequence {xn} has the following property:

For each ϵ > 0, there exists a positive integer n0 such thatm,n ≥ n0 ⇒ d(xm, xn) < ϵ

Asequencewith this property is called a Cauchy sequence . Intuitively, a Cauchy sequence is a sequence

whose elements become arbitrarily close to each other as the sequence progress:

n

xn

In addition, we have also shown that every convergent sequence is a Cauchy sequence. The converse
of this, however, is not necessarily true. That is, a Cauchy sequence is not necessarily convergent. As an
example, consider the subspaceX = (0, 1] of the real linewhere xn ∈ X . The sequence defined by xn = 1

n
is easily seen to be a Cauchy sequence in this space, but it is not convergent, because the point 0 ̸∈ X is
not a point of the space
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n

xn

xn = 1 ∈ X

xn = 0 ̸∈ X

Figure 3.1: Here, the real numbers in the range of X = (0, 1] takes on the values “y-axis”. We use a solid
line to denote the range of n values under the subspace ofX . It really should be a dotted line because n
can only be integers. We do that in order to distinguish it from the range we are not concerned with, i.e.
X = (1,∞)

The notion of a convergent sequence is not intrinsic to the sequence itself, but also depends on the struc-
ture of the space in which it lies. A convergent sequence is not convergent ”on its own”; it must converge
to some point in the space…

…Sounds wordy? Let’s put it this way: when the space has a hole in it. Like if you remove 0 from R
like in the case above, then 1

n is a Cauchy sequence that doesn’t converge.

We are now ready to introduce the concept of complete metric space, which we define as follows:

Definition 4: Complete Metric Space

A complete metric space is a metric space in which every Cauchy sequence is convergent

Definition 5: Linear Space

Let L be a non-empty set, and assume that each pair of elements x and y in L can be combined by
a process called addition to yield an element z in L denoted by z = x + y. Assume also that this
operation of addition satisfies the following conditions:

x+ y = y + x

x+ (y + z) = (x+ y) + z

There exists inL a unique element, denoted by 0 and called the zero element, or the origin, such
that x+ 0 = x for every x

To each element x in L there corresponds a unique element in L, denoted by −x and called the
negative of x, such that x+ (−x) = 0.

We adopt the device of referring to the system of real numbers or to the system of complex numbers
as the scalers. We now assume that each scalar α and each element x in L can be combined by a
process called scalar multiplication to yield an element y in L denoted by y = αx in such a way that

27

https://github.com/QubitPi/general-relativity
https://qubitpi.org/
https://www.reddit.com/r/learnmath/comments/exp735/comment/fgaqd8p/?utm_source=share&utm_medium=web3x&utm_name=web3xcss&utm_term=1&utm_content=share_button


Study Notes General Relativity QubitPi

α(x+ y) = αx+ αy

(α+ β)x = αx+ βx

(αβ)x = α(βx)

1 · x = x

The albegraic system L defined by these operations and axioms is called a linear spacea

aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

Depending on the numbers admitted as scalars (only the real numbers, or all the complex numbers), we
distinguish when necessary between real linear spaces and complex linear spaces. A linear space is often
called a vector space and its elements are spoken of as vectors.

Definition 6: Normed Linear Space

A Normed Linear Spacea is a linear space on which there is a norm defined, i.e. a function which
assigns to each element x in the space a real number ∥x∥ in such a manner that

∥x∥ ≥ 0, and ∥x∥ = 0 ⇐⇒ x = 0

∥x+ y∥ ≤ ∥x∥+ ∥y∥

∥αx∥ = |α|∥x∥
aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

Intuitively, a normed linear space is simply a linear space inwhich anotionof thedistance fromanarbitrary
element to origin is defined.

Definition 7: Banach space

A Banach spacea is a normed linear space which is complete as a metric space.

aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

One of the principal applications of the tory of Banach algebras develped from Def. 3 to Def 7 is to the
study of operators in Hilbert spaces.2

Definition 8: Hilbert Space

A Hilbert spacea is a complex Banach space whose norm arises from an inner product in which there
is defined a complex function (v,w) of vectors v with the following properties:

(αv + βw,u) = α(v,u) + β(w,u)

2Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.243
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(v,w) = (w,v)

(v,v) = ∥x∥2

aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.245

A complex functiona is one whose range consists of complex numbers

If z = a+ ib is a complex number, then its conjugate z is defined by z = a+ i(−b)b

aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.17
bIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.53

3.2 Indefinite Inner Products

Definition 9: Indefinite Inner Product

Let Cn be the n-dimensional complex Hilbert space consisting of all column vectors x with complex
coordinate x(j), j = 1, 2, . . . , n. The typical column vector xwill be written in the form
x =

〈
x(1), x(1), . . . , x(n)

〉
. The standard inner product in Cn is denoted by (., .). Thus,

(x, y) =

n∑
j=1

x(j)y(j) (3.3)

where x =
〈
x(1), x(1), . . . , x(n)

〉
, y =

〈
y(1), y(1), . . . , y(n)

〉
A function (., .) fromCn×Cn toC is called an indefinite inner product inCna if the following axioms
are satisfied:

Linearity in the first argument:

[αx1 + βx2, y] = α[x1, y] + β[x2, y] (3.4)

for all x1, x2, y ∈ Cn and all complex numbers alpha, β

Antisymmetry:

[x, y] = [y, x] (3.5)

for all x, y ∈ Cn

Nondegeneracy: if [x, y] = 0 for all y ∈ Cn, then x = 0

aIndefinite Linear Algebra and Applications, L. Rodman, Peter Lancaster, Israel Gohberg. 2005, p.7
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Chapter 4

Linear Algebra

4.1 Linear Algebra

Definition 10: Vector Space

The space Rn consists of all column vectors v with n componentsa

aIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 120

The components of v are real numbers, which is the reason for the letterR. A vectorwhosen components
are complex numbers lies in the space Cn

Definition 11: Subspace

A subspacea of a vector space is a set of vectors (including 0) that satisfies 2 requirements: If v and
w are vectors in the subspace and c any scalar, then

v +w is in the subspace

cv is in the subspace

In other words, the set of vectors is “closed” under addition and multiplication - all linear combina-
tions stay in the subspace

aIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 122

Intuitively, we can visualize a subspace in the 3-dimensional space R3. Choose a plane through the origin
(0, 0, 0). That plane is a vector space in its own right. If we add two vectors in the plane, their sum is in the
plane; if wemultiply an in-plane vector by 2 or−5, it is still in the plane. This plane is a vector space inside
R3 or is a subspace of the full vector space R3

Definition 12: Column Space

The column space, C(A), consists of all linear combinations of the columns, i.e. the combinations of
all possible vectors Ax

The subspece C(A) is the “span” of matrix A
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Definition 13: Span

A set of vectors spans a space if their linear combinations fill the space

Definition 14: Basis for a Vector Space

A basisa for a vector space is a sequence of vectors with 2 properties

The basis vectors are linearly independent, and

they span the space

aIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 172

4.1.1 Eigenvalues and Eigenvectors

All matrices in this section are square

Almost all vectors change direction, when they are multiplied by a matrix A. Certain exceptional vectors
x don’t and are in the same direction asAx. Those are the eigenvectors1. By definition, the result of this
multiplication shall be a number times the original x, i.e.

Ax = λx (4.1)

We call λ an eigenvalue of A.

The eigenvalue λ tells whether the special vector x is stretched (e.g. 2) or shrunk (e.g. 1
2 ) or reversed (-1)

or left unchanged (1) when multiplied by A. When λ = 0, Then Ax = 0x means this eigenvector x is in
nullspace2

Matrix Diagonalization

Why do we study disgonalizing a matrix?

When x is an eigenvector, multiplication byA is just multipliation by a number λ: Ax = λx. All the
difficulties of matrices are swept away, because the matrix A turns into a diagonal matrix Λwhen
we use the eigenvectors properly.

Suppose a n by nmatrix A has n linearly independent eigenvectors x1, . . . ,xn. Put them into the columns
of an eigenvector matrix S. Multiplying Awith S3:

1Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 283
2

Definition 15: Nullspace

The nullspace of A consists of all solutions to Ax = 0. These vectors x are in Rn. The nullspace containing all solutions of
Ax = 0 is denoted byN(A) (Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 132)

3Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 298
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AS = A

x1 . . . xn

 (4.2)

=

λ1x1 . . . λnxn

 (4.3)

=

x1 . . . xn


λ1

. . .
λn

 (4.4)

= S

λ1

. . .
λn

 (4.5)

Let

Λ =

λ1

. . .
λn

 (4.6)

Then

AS = SΛ or S−1AS = Λ or A = SΛS−1 (4.7)

It is important to keep in mind that S has an inverse because it’s columns are linearly independent

We call Λ the Eigenvalue Matrix

Definition 16: Diagonalization

Suppose a n by n matrix A has n linearly independent eigenvectors x1, . . . ,xn. . Then S−1AS is the
eigenvalue matrix Λ

S−1AS = Λ =

λ1

. . .
λn

 (4.8)

Definition 17: Bilinear Form

Let F be a field and V a vector space over F . A bilinear form on V is a function B : V × V → F that
is linear in each variable when the other one is fixed. That is

B(v + v′, w) = B(v, w) +B(v′, w) (4.9)

B(cv, w) = cB(v, w) (4.10)

for all v, v′, w ∈ V and c ∈ F , and
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B(v, w + w′) = B(v, w) +B(v, w′) (4.11)

B(v, cw) = cB(v, w) (4.12)

for all v, v, w′ ∈ V and c ∈ F

We call B symmetric when

B(v, w) = B(w, v) (4.13)

for all v, w ∈ V a

Definition 18: Linear Transformation

The transformation is linear if itmeets these
requirements for all v andwa:

T (cv + dw) = cT (v) + dT (w) (4.14)

for all c and d

aIntroduction to Linear Algebra, Strang, 4th Edi-
tion, 2009, p. 375

Definition 19: Field

A field is a set of elements in which a pair
of operations called multiplication and ad-
dition is defined analogous to the opera-
tions of multiplication and addition in the
real number system (which is itself an ex-
ample of a field)a

aA. Fields, Chapter I: Linear Algebra, Galois The-
ory: Lectures Delivered at the University of Notre
Dame, Project Euclid

Definition 20: Group

A groupa is a non-empty setG togetherwith a rule that assigns to each pair g and h of elements
ofG and element g ∗ h such that

g ∗ h ∈ G, which we sayG is closed under ∗

g ∗ (h ∗ k) = (g ∗ h) ∗ k for all g, h, k ∈ G, which we call ∗ being associative

There exists an identity element e ∈ G such that e ∗ g = g ∗ e for all g ∈ G

Every element g ∈ G has an inverse g−1 such that g ∗ g−1 = g−1 ∗ g = e

aIntroduction to Group Theory, Michael Wemyss
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Definition 21: Vector Space (Field Theory)

If V is an additive abelian group with elements A,B, . . ., F a field with elements a, b, . . . , and
if for each a ∈ F and A ∈ V the product aA denotes element of V , then V is called a (left)
vector space over F if the following assumptions hold:

a(A+B) = aA+ aB (4.15)

(a+ b)A = aA+ bA (4.16)

a(bA) = (ab)A (4.17)

1A = A (4.18)

(4.19)

aKeith Conrad
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Chapter 5

Riemannian Geometry

This chapter was raised by the discussion of Green’s Theorem

There are lots of texts around the topics of Riemannian Geometry. Here is a list of threads in which great
people recommended good books on it

Riemannian and Pseudo-Riemannian Geometry

Beginner’s book for Riemannian geometry

Need help finding a good book on Riemann Geometry

Introductory text on Riemannian geometry

One will need quite a solid backgound in topology, and especially differential geometry. I would recom-
mend the book series by Lee: Introduction to topological manifolds / introduction to smooth manifolds/
introduction to riemannian manifolds.1

Study notes on Riemannian Geomery

5.1 What are Manifolds?

5.1.1 Intuitive Meaning

Amanifold is a space that ”looks like” regular old Euclidean space (like a line, a plane, 3d space, and so on)
if we zoom in enough. More formally, every point in amanifold has a neighborhood that is homeomorphic
to (”the same as”) a neighborhood in some Euclidean space.

Easy examples include circles and spheres. A circle is curved in a global sense, but if you’re realllllllly close
to a circle, it looks like a line. Similarly, a sphere is curved in a global sense, but if you’re really close, it
looks like a plane (which is why the Earth looks flat when we live on it). If we cut off a little chunk of
circle, it’s essentially just a line (that is, it’s the same as 1D Euclidean space). If you cut off a little chunk
of sphere, it’s essentially just a plane (that is, it’s the same as 2D Euclidean space)2.

1Book recommendations
2r/explainlikeimfive
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This sounds like amanifold is always1dimensionhigher thanEuclidean space. In this sense, ann-dimensional
Euclidian space Rn is the prototype of an n-dimensional manifold.

!
It should be noted that the number “n” in manifold is not the same thing as the number of coordi-
nates we use to locate a position in Euclidian space.

For instance, manifolds of dimension 1 are lines and curves. It is easy for us to see that a real line is
an example of such case. The space curves, which are often diescribed parametrically by equations
such as (x, y, z) = (f(t), g(t), h(t)), are also 1-dimensional manifolds. See Fig 5.1 below:

Figure 5.1: Intuitively, if we keep zooming in, we get a straight line on the spiral

In essence, an n-dimensional manifold “looks like” Rn locally.

5.1.2 Formal Definition of Manifolds
3The chief problem with the intuitive introduction of manifolds is that it depends on having an “ambient
Euclidean space” in which our n-manifold lives. This introduces a great deal of extraneous structure that
is irrelevant to our purpose. Instead, we would like to view a manifold as a mathematical object in its
own right, not as a subset of some larger space. They key concept that makes this possible is that of a
topological space.

We begin by defining topological spaces, motivated by the open subset criterion form continuity metric
spaces.

Definition 22: Continuous Mapping

If (M1, d1) and (M2, d2) are metric spaces and x is a point in M1, a map f : M1 → M2 is said to be
continous at x if for any ϵ > 0 there exists δ > 0 such that d1(x, y) < δ implies d2(f(x), f(y)) < ϵ for
all y ∈M1; and f is continuous if it is continuous at every point ofM1

a

aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.398

Definition 23: Image

Let f : X → Y be a function. If S ⊂ X , the image of S under f , denoted by f(S), is the subset of Y
defined bya

f(S) = {y ⊆ Y : y = f(x) for some x ∈ S} (5.1)

aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.387

3Introduction to Topological Manifolds, John M. Lee, 2nd, P.19
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Definition 24: Preimage

If T is a subset of Y , the preimage of T under f (also called the inverse image) is the subset
f−1(T ) ⊆ X defined bya

f−1(T ) = {x ∈ X : f(x) ∈ T} (5.2)

aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.388

Definition 25: Open Subset

LetM be a metric spacea

For any x ∈M and r > 0, the (open) ball of radios r around x is the set

Br(x) = y ∈M : d(y, x) < r (5.3)

and the closed ball of radios r around x is

Br(x) = y ∈M : d(y, x) ≤ r (5.4)

A subset A ⊆M is said to be an open subset ofM if it contains an open ball around each of its
points

A subset A ⊆M is said to be a closed subset ofM ifM ∖A (set subtraction) is open

aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.397

Prove the Properties of Open Subsets of a Metric Space (Lee, p.397)

Prove the Properties of Closed Subsets of a Metric Space (Lee, p.397)

Theorem 2 (Open Subset Criterion for Continuity)

A map f : M1 → M2 between metric spaces is continuous if and only if the preimage of every
open subset ofM2 is open; that is, whenever U is an open subset ofM2, its preimage f−1(U) is
open inM1

Proof First assume f is continuous, and let U ⊆M2 be an open set.

Let x ∈M1 be an element of the preimage of U ; that is, x is any point in

f−1(U) = {x ∈M1 : f(x) ∈ U}. SinceU is open, there exists some r = ϵ > 0 such thatBϵ(element in U) =
Bϵ(f

−1(U)) ⊆ U

Finish the proof
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Part IV

Electromagnetism
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Why study Electromagnetism?

This question arose because I noteiced Einstein dedicated a huge portion of his famous Special
Relativity paper on its application in Electromagnetism.

In fact, Einstein was trying ridiculously hard to unify his General Theory of Relativity with Electro-
magnetisma. Why?

Relativity describes our Universe pretty good but works horribly in the microscopic world like sub-
atomic particles, whereas Quantum Physics works from the opposite. Relativity is, in some sense,
not complete

Those who are familiar with Maxwell’s Equations know by heart that Electrodynamics is a beau-
tifully complete and successful theory. It has become a king of paradigm for physicists: an ideal
model that other theories strive to emulate.

Studying Electromagnetism is same thing as studying the standard model of Physics which shall
guide my study of General Theory of Relativity.

a…Albert Einstein, who attempted to unify his general theory of relativity with electromagnetism…, Wikipedia
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Chapter 6

Mathematics

6.1 Differential Calculus

Theorem 3 ( Fundamental Lemmaa )
aCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 680

Suppose that a function z = f(x, y) and its partial derivatives fx and fy are defined at a point
(x0, y0), and also through some neighborhood of this point. Suppose further that fx and fy are
continuous at (x0, y0). Then the increment∆z can be expressed in the form of

∆z = fx(x0, y0)∆x+ fy(x0, y0)∆y + ϵ1∆x+ ϵ2∆y (6.1)

where ϵ1 and ϵ2 → 0 as∆x and∆y → 0

To prove this statement1, we analyze the change∆z in 2 steps as shown in Fig. 6.1:

x

y

(x0, y0) (x0 +∆x, y0)

(x0 +∆x, y0 +∆y)

∆x

∆y

Figure 6.1: We assume∆z = f(x0 +∆x, y0 +∆y)− f(x0, y0) and∆z = ∆1z +∆2z

1. changing x alone and moving from (x0, y0) to (x0 +∆x, y0), and then

2. changing y alone and moving from (x0 +∆x, y0) to (x0 +∆x, y0 +∆y)

We denote the first change in z by∆1z, so that

1Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 841
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∆1z = f(x0 +∆x, y0)− f(x0, y0) (6.2)

By The Mean Value Theorem2, we can write this as

∆1z = ∆xfx(x1, y0) (6.3)

where x1 is between x0 and x0 +∆x. Smilary, if we denote the second part of the change in z by∆1z, so
that

∆2z = f(x0 +∆x, y0 +∆y)− f(x0 +∆x, y0) (6.4)

then

∆2z = ∆yfy(x0 +∆x, y1) (6.5)

where y1 is between y0 and y0 +∆y.

Now as∆x and∆y → 0, x1 → x0 and y1 → y0. By the assumed continuity of fx and fy at (x0, y0), we can
write

fx(x1, y0) = fx(x0, y0) + ϵ1 (6.6)

fy(x0 +∆x, y1) = fy(x0, y0) + ϵ2 (6.7)

where ϵ1 and ϵ2 → 0 as∆x and∆y → 0. Plugging Eq.6.6 into Eq.6.3 gives us

∆1z = ∆x [fx(x0, y0) + ϵ1] = ∆xfx(x0, y0) + ∆xϵ1 (6.8)

and similarly Eq.6.7 into Eq.6.5

∆2z = ∆y [fy(x0, y0) + ϵ2] = ∆yfy(x0, y0) + ∆yϵ2 (6.9)

2

Theorem 4 ( The Mean Value Theorema )
aCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 76

Let y = f(x) be a function with the following two properties:
1. f(x) is continuous on the closed interval [a, b]; and
2. f(x) is differentiable on the open interval (a, b)
Then there exists at least one point c in the open interval (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

or equivalently,

f(b)− f(a) = f ′(c)(b− a)
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Since we have assumed∆z = ∆1z +∆2z

∆z = ∆xfx(x0, y0) + ∆xϵ1 +∆yfy(x0, y0) + ∆yϵ2 = fx(x0, y0)∆x+ fy(x0, y0)∆y + ϵ1∆x+ ϵ2∆y (6.10)

3 Now Let f(x, y, z) be a function of 3 variables defined throughout some region of three-dimensional
space, and let P be a point in this region. At what rate does f change as we move away from P in a
specified direction? In the directions of the positive x, y, and z-axes, we know that the rates of change off
are given by the partial derivatives ∂f

∂x ,
∂f
∂y , and

∂f
∂z . But how do we calculate the rate of change of f if we

move away from P in a direction that is not a coordinate direction?

Let P = (x, y, z) andR = xi+ yj+ zk being the position vector of P . If wemove away from P to a nearby
point Q = (x + ∆x, y + ∆y, z + ∆z), then the function will change by an amoutn ∆f . Let ∆s denote the
distance between P andQ, then we have

df

ds
= lim

∆s→0

∆f

∆s
(6.11)

We further assume that f(x, y, z) has continuous partial derivatives with respect to x, y, and z.

! Unless explicitly stated otherwise, all functions we deal with are always continuous in all of our
discussions

The Fundamental Lemma enables us to write∆f in the form of

∆f =
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z + ϵ1∆x+ ϵ2∆y + ϵ3∆z (6.12)

As∆s→ 0, i.e. as∆x→ 0,∆y → 0, and∆z → 0, ϵ1, ϵ2, ϵ3 → 0. Dividing Eq.6.12 by∆s gives

lim
∆s→0

∆f

∆s
=

∂f

∂x

dx

ds
+

∂f

∂y

dy

ds
+

∂f

∂z

dz

ds
(6.13)

Combing Eq.6.13 and 6.11 results in

df

ds
=

∂f

∂x

dx

ds
+

∂f

∂y

dy

ds
+

∂f

∂z

dz

ds
(6.14)

6.1.1 Gradient
4 The theorem on partial derivaves states that

dT =

(
∂T

∂x

)
dx+

(
∂T

∂y

)
dy +

(
∂T

∂z

)
dz (6.15)

3Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 681
4Introduction to Electrodynamics by Griffiths, 3rd, p. 13
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Writing it in the dot product form:

dT =

(
∂T

∂x
x̂+

∂T

∂y
ŷ +

∂T

∂z
ẑ

)
· (dxx̂+ dyŷ + dzẑ) (6.16)

= ∇T · dl (6.17)

where

∇T ≡ ∂T

∂x
x̂+

∂T

∂y
ŷ +

∂T

∂z
ẑ (6.18)

is the gradient of T . We also call∇ as the vector operator that acts upon T

The Geometrical Interpretation of the Gradient

The doc product 6.17 can be written as

dT = ∇T · dl = |∇T ||dl| cos θ (6.19)

We soon realize that themaximum change of T occurs when θ = 0, therefore

The gradient∇T points in the direction of the maximum increase of T , and its
magnitude |∇T | gives the slope (rate of increase) along this maximal direction

Now there are 3 ways the operator∇ can act:

1. On a scalar function T : ∇T (the gradient, which we’ve discussed so far)

2. On a vector function via the dot product: ∇ · v (the divergence)

3. On a vector function via the cross product: ∇× v (the curl)

6.1.2 Divergence

From the definition of∇, we construct the divergence

∇ · v =

(
∂T

∂x
x̂+

∂T

∂y
ŷ +

∂T

∂z
ẑ

)
· (vxx̂+ vyŷ + vzẑ) (6.20)

=
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(6.21)

The Meaning of Divergence

The Geometrical Interpretation of the Divergence

The divergence is a measure of how much the vector v spreads out (diverges) from the point in
question
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∇ · v > 0 ∇ · v < 0 ∇ · v = 0 ∇ · v = 0

Figure 6.2: Divergence of vector fields

6.1.3 Curl

The Cross Prudct of Two Vectors

5 Many problems in geometry require us to find a vector that is perpendicular to each of two given vectors
A and B. A routine way of doing this is provided by the cross product (or vector product) of A and B,
denoted byA ×B. This cross product is very different from the dot productA ·B, becauseA ×B is a
vector whileA ·B is a scalar.

Consider two nonzero vectorsA andB. Suppose their tails conincide and let θ be the angle fromA toB
(not fromB toA) with 0 ≤ θ ≤ π.

|A×B|

A

B

A×B

n

θ

Figure 6.3: The plane defined byA andB

These 2 vectors determine a plane, as shown in Fig. 6.3. We now choose the unit vectornwhich is normal
(perpendicular) to this plane and whose direction is determined by the right-hand thumb rule6. This gives
the direction ofA×B

VectorsA andB also defines a parallelogram in this plane of area |A||B| sin θ, which defines the magni-
tude ofA×B.

Definition 26: Cross Product ofA andB

A×B = |A||B| sin θ (6.22)

Our next objective is to develop a convenient formula for calculatingA×B where

A = a1î+ a2ĵ + a3k̂ and B = b1î+ b2ĵ + b3k̂ (6.23)

We need to know that the cross product possesses the following algebraic properties

5Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 640
6This means that if the right hand is placed so that the thumb is perpendicular to the plane ofA andB and the fingers curl from

A toB in the direction of angle θ, then n points in the same direction as the thumb of this hand
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(cA)×B = c(A×B) = A× (cB), (6.24)

A× (B +C) = A×B +A×C, (6.25)

(A+B)×C = A×C +B ×C (6.26)

Property 6.24, also called homogeneous in each argument7, is easily established directly from Defini-
tion 26.

The proof of Eq. 6.25 starts with a unit vector n̂ and 3 arbitrary vectorsB, C, andB + C. n̂ × (B + C)
can be constructed by performing the following two operations:

A

B +C

B

C

(B +C)′

B′
C ′ (B +C)′′

B′′

C ′′θ

1. ProjectB,C, and (B + C)onto theplaneperpendicular to n̂ toobtain a vectorB′,C ′, and (B + C)′.
By the nature of projection, the head and tails ofB′,C′, and (B + C)′ still coincide. Then,

2. rotate the triangle formed byB′,C ′, and (B + C)′ by 90 degrees counterclockwise with respect to
the tail of n̂ to obtainB′′,C ′′, and (B + C)′′, which still form a triangle.

Therefore, we have

(B +C)′′ = B′′ +C ′′

What this means is, geometrically, the operation of n̂× (B +C) and n̂×B + n̂×C produces the same
result, i.e. the vector (B +C)′′. Therefore

n̂× (B +C) = n̂×B + n̂×C

Now let

A = cn̂ (6.27)

We will then have

�
��1
c
A× (B +C) =

�
��1
c
A×B +

�
��1
c
A×C

ending up with the original formula of

A× (B +C) = A×B +A×C

7Cross product, Wikiversity
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Eq. 6.26 follows from Eq 6.25 combined with the corollary of

A×B = −B ×A (6.28)

(A+B)×C = − [C × (A+B)]

= −(C ×A+C ×B)

= −C ×A−C ×B

= A×C +B ×C

We continue with our task of multiplying out the cross product of the vectors using Eq. 6.24, 6.25, and
6.26. By substituting b1î+ b2ĵ + b3k̂ withB:

A×B = (a1î+ a2ĵ + a3k̂)× (b1î+ b2ĵ + b3k̂) (6.29)

= (a1î+ a2ĵ + a3k̂)×B (6.30)

= a1î×B + a2ĵ ×B + a3k̂ ×B (6.31)

= a1î× (b1î+ b2ĵ + b3k̂) + a2ĵ × (b1î+ b2ĵ + b3k̂) + a3k̂ × (b1î+ b2ĵ + b3k̂) (6.32)

= a1b1î× î+ a1b2î× ĵ + a1b3î× k̂ + a2b1ĵ × î+ a2b2ĵ × ĵ + a2b3ĵ × k̂ + a3b1k̂ × î+ a3b2k̂ × ĵ + a3b3k̂ × k̂
(6.33)

With the following corollaries,

î× î = 0 (6.34)

ĵ × ĵ = 0 (6.35)

k̂ × k̂ = 0 (6.36)

î× ĵ = −ĵ × î = k̂ (6.37)

ĵ × k̂ = −k̂ × ĵ = î (6.38)

k̂ × î = −î× k̂ = ĵ (6.39)

(6.40)

Eq. 6.33 simplifies down to

A×B = a1b2k̂ − a1b3ĵ − a2b1k̂ + a2b3î+ a3b1ĵ − a3b2î (6.41)

= (a2b3 − a3b2)̂i− (a1b3 − a3b1)ĵ + (a1b2 − a2b1)k̂ (6.42)
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We recall that a determinant of order 2 is defined by

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ = a1b2 − a2b1 (6.43)

A determinant of order 3 can be defined in terms of determinants of order 2 as

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2

∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ (6.44)

Eq. 6.42 is equivalent to

A×B =

∣∣∣∣a2 a3
b2 b3

∣∣∣∣ î− ∣∣∣∣a1 a3
b1 b3

∣∣∣∣ ĵ +

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ k̂ (6.45)

=

∣∣∣∣∣∣
î ĵ ĵ
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ (6.46)

!
It shouldbenoted that formula 6.46 is by nomeans adefinitionof cross product, becauseobtaining
it must assume the distributivity law a. We should view 6.46 simply as a convenient tool for making
calculations

In addition, Definition like 26 that avoiddependenceonexplicit representations of vectors in terms
of any particular coordinate system are called invariant or coordinate-free. 6.46 doesn’t preserve
such invariant because it assumes a Cartesian spaceb

aThe determinant pre-assumes the distributivity of cross product
bCross product, Wikiversity

Curl

8 From Eq. 6.46 we construct the curl:

∇× v =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

vx vy vz

∣∣∣∣∣∣ (6.47)

=

(
∂vz
∂y
− ∂vy

∂z

)
x̂+

(
∂vx
∂z
− ∂vz

∂x

)
ŷ +

(
∂vy
∂x
− ∂vx

∂y

)
ẑ (6.48)

The Geometrical Interpretation of the Divergence

The curl is a measure of how much the vector v “curls around” the point in question

8Introduction to Electrodynamics by Griffiths, 3rd, p. 19
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∇× v = ∇× v = 0 ∇× v = 0 ∇× v = 0 ∇× v =

Figure 6.4: Curl of vector fields

6.1.4 Line Integrals
9 Throughout our discussion we assime that the functions under discussion have all the continuity and
differentiability properties that are needed in any given situation

If a charge is moving in an electromagnetic field with a constant force F (constant in both direction and
magnitude), then we know that the work done by this force is the product of the component of F in the
direction of motion and the distance the charged particle moves, i.e.

W = F ·∆R (6.49)

whereR is the vector from the initial position of the particle to its final position. Now suppose that F is
not constant, but instead is a vector function that varies from point to pint throughout a certain region
of the plane, say

F = F (x, y) = M(x, y)̂i+N(x, y)ĵ (6.50)

The vector-value function 6.50 is usually called force field. More generally, a vector field in the
plane is any vector-valued function that associates a vectorwith eachpoint (x, y) in a certain plane
region R. In this context a function whose values are numbers (scalars) is called a scalar field.
Every scalar field f(x, y) gives rise to a corresponding vector field

∇f(x, y) = ∂f

∂x
î+

∂f

∂y
ŷ (6.51)

This is called the gradient field of f . Some vector fields are gradient fields, but most are not.
Those gradient fields, however, are of special importance

Suppose also that this variable force pushes the charged particle along a smooth curveC with a paramet-
ric equations

x = x(t) and y = y(t), t1 ≤ t ≤ t2 (6.52)

The work done by this force is denoted by

∫
C

F · dR or
∫
C

M(x, y)dx+N(x, y)dy (6.53)

9Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 751
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This is called the line integral

Weapproximate the curvebyapolygonal pathas shown inFig. 6.5. That is, choosepointsP0 = A,P1, P2, . . . , Pn−1, Pn =
B along C in this order; let Rk be the position vector of Pk and define the n incremental vectors by
∆Rk = Rk+1 −Rk, where k = 0, 1, . . . , n− 1

P0 = A

P1 P2
Pn−1Pn = B∆R0

∆R1

… ∆Rn−1

Figure 6.5: Approximating line integral

If we denote by Fk the value of the vector function F at Pk and form the sum

n−1∑
k=0

Fk ·∆Rk (6.54)

then the line integral of F along C is defined to be the limit of sums

∫
C

F · dR = lim
n−1∑
k=0

Fk ·∆Rk (6.55)

a It will often be necessary to consider situations in which th path of integration C is a closed
curve. In this case a line integral is usually written with a small circle on the integral sign, as in∮

C

F · dR

aCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 757

The Fundamental Theorem of Calculus

10We intuitively know that the definite integral of a continuous function is the limit of approximating
sums, i.e.

∫ b

a

f(x)dx = lim
max∆xk→0

n∑
k=1

f(x∗
k)∆xk (6.56)

The definite integral which is defined here is often called the Riemann integral, in honor of the 19th-
centry Germanmathematician who was the first to give a careful discussion of integrals of discontinuous
functions11

Eq. 6.56 immediately proves the following properties of definite integral12:

10Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 206
11Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 202
12Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 214
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∫ b

a

f(x)dx = −
∫ a

b

f(x)dx (6.57)

∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx (6.58)

∫ b

a

[f(x) + g(x)]dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx (6.59)

if f(x) ≤ g(x) on [a, b], then
∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx (6.60)

∫ b

a

f(x)dx =

∫ c

a

f(x)dx+

∫ b

c

f(x)dx (6.61)

This definition works for integrals of rather simple functions such as

∫ b

0

xdx =
b2

2

but not for such complicate integrals as

∫ 1

0

x4

(7 + x5)
1
3

dx

The Fundamental Theorem of Calculus links the concept of differentiating a function with the concept of
integrating a function, showing that these two operations are essentially inverse of one another . Be-

fore the discover of this theorem, however, it was not recognized that these two operationswere related.
Ancient Greek mathematicians knew how to compute area via infinitesimals, an operation that we would
now call integration. The origins of differentiation likewise predate the fundamental theorem of calcu-
lus by hundreds of years. The historical relevance of the fundamental theorem of calculus is not the
ability to calculate these operations, but the realization that the two seeminly distinct operations
are actually closely related

Theorem 5 (The First Fundamental Theorem of Calculus)

Let f be a continuous real-valued function definedona closed interval [a, b]. LetF be the function
defined, for all x in [a, b], by

F (x) =

∫ x

a

f(t)dt (6.62)

Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b) and

F ′(x) = f(x) (6.63)

for all x in (a, b) so F is an antiderivative of f
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Proof of Theorem 5 13 For a given function f , define the function F (x) as

F (x) =

∫ x

a

f(t)dt

For any two number x1 and x1 +∆x in [a, b], we have

F (x1 +∆x)− F (x1) =

∫ x1+∆x

a

f(t)dt−
∫ x1

a

f(t)dt (6.64)

=

∫ x1+∆x

a

f(t)dt+

∫ a

x1

f(t)dt (by Eq. 6.57) (6.65)

=

∫ x1+∆x

x1

f(t)dt (by Eq. 6.61) (6.66)

To be able to go any further, we shall introduce theMean value theorem for definite integrals

Theorem 6 (Mean Value Theorem for Definite Integrals)

If f : [a, b] → R is continuous and g is an integrable function that does not change sign on [a, b],
then there exists c in (a, b) such that

∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx (6.67)

Proof suppose f : [a, b] → R is continuous and g is a non-negative integrable function on [a, b].
By the extreme value theorem, there existsm andM such that for each x in [a, b],m ≤ f(x) ≤M
and f [a, b] = [m,M ]. Since g is non-negative,

m

∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤M

∫ b

a

g(x)dx (6.68)

If g(x) = 0,

0 ≤
∫ b

a

f(x)g(x)dx ≤ 0 (6.69)

∫ b

a

f(x)g(x)dx = 0 (6.70)

so for any c ∈ [a, b] ∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx = 0 (6.71)

If g(x) ̸= 0,

m ≤ 1∫ b

a
g(x)dx

∫ b

a

f(x)g(x)dx ≤M (6.72)

By the intermediate value theorem, f attains very value of the interval [m,M ] so for some c in
[a, b]:

13Proof of the first part, Fundamental theorem of calculus, Wikipedia
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f(c) =
1∫ b

a
g(x)dx

∫ b

a

f(x)g(x)dx (6.73)

that is,

f(c)

∫ b

a

g(x)dx =

∫ b

a

f(x)g(x)dx (6.74)

Finally, if g is negative on [a, b], we can still get the same result.

By having g(x) = 1 in mean value theorem for integration, we have

∫ b

a

f(x)dx = f(c)(b− a) (6.75)

We can nowmove on with Eq. 6.66. There exists a real number c ∈ [x1, x1 +∆x] such that

F (x1 +∆x)− F (x1) =

∫ x1+∆x

x1

f(t)dt = f(c)∆x (6.76)

so

F (x1 +∆x)− F (x1)

∆x
= f(c) (6.77)

lim
∆x→0

F (x1 +∆x)− F (x1)

∆x
= lim

∆x→0
f(c) (6.78)

that is,

F ′(x1) = f(x1) (6.79)

Corollary 1: Corollary of Theorem 5

If f is a real-valued continuous function on [a, b] and F an antiderivative of f in [a, b], then

∫ b

a

f(t)dt = F (b)− F (a) (6.80)

Note that the corollary assumes continuityon thewhole interval. This result is strenghened slightly
in Theorem 7

Proof of Corollary 1 14

15 Suppose F is an antiderivative of f , which is continuous on [a, b]. Let G(x) also be an antiderivative of
f :

14

15Proof of the corollary, Fundamental theorem of calculus, Wikipedia
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G(x) =

∫ x

a

f(t)dt (6.81)

By Theorem 6, we have

F ′(x) = f(x) (6.82)

G′(x) = f(x) (6.83)

It is easy to see then

F −G = c (6.84)

where c is a constant. That is, there is a number c such that

G(x) = F (x) + c (6.85)

for all x ∈ [a, b]

Let x = a, we have

F (a) + c = G(a) =

∫ a

a

f(t)dt = 0 (6.86)

which means

c = −F (a) (6.87)

or

G(x) = F (x)− F (a) (6.88)

Therefore

∫ b

a

f(t)dt = G(b) = F (b)− F (a) (6.89)

Theorem 7 (The Second Fundamental Theorem of Calculus: Newton-Leibniz
Theorem)

Let f be a real-valued function on a closed interval [a, b] and F a continuous function on [a, b]
which is an antiderivative of f in (a, b):

F ′(x) = f(x) (6.90)
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If f is Riemann integrable on [a, b], then

∫ b

a

f(x)dx = F (b)− F (a) (6.91)

Here we do not assume f is continuous

Proof of Theorem 7 16 Let f be Riemann integrable on [a, b] and let f admit an antiderivative F on (a, b)
such that F is continuous on [a, b].

Begin with the quantity F (b)− F (a). Let there be numbers x0, . . . , xn such that

a = x0 < x1 < x2 < . . . < xn−1 < xn = b (6.92)

If follows that

F (b)− F (a) = F (xn)− F (x0) (6.93)

Now, we add each F (xi) along with its additive inverse, so that the resulting quantity is equal:

F (b)− F (a) (6.94)

= F (xn) + [−F (xn−1 + F (xn−1)] + . . .+ [−F (x1 + F (x1)]− F (x0) (6.95)

= [F (xn)− F (xn−1)] + [F (xn−1)− F (xn−2)] + . . .+ [F (x2)− F (x1)] + [F (x1)− F (x0)] (6.96)

=

n∑
i=1

[F (xi)− F (xi−1)] (6.97)

Since F is differentiable on interval (a, b) and continuous on [a, b], it is also differentiable on each interval
(xi−1, xi) and continuous on each interval [xi−1, xi]. According to the Mean Value Theorem, for each i
there exists a ci in (xi−1, xi) such that

F (xi)− F (xi−1) = F ′(ci)(xi − xi−1) (6.98)

Plugging this equation into Eq. 6.97, we get

F (b)− F (a) =

n∑
i=1

[F ′(ci)(xi − xi−1)] =

n∑
i=1

[f(ci)∆xi] (6.99)

We are describing the area of a rectangle, with the width times the height, and we are adding the areas
together. Each rectangle, by virtue of the Mean Value Theorem, describes an approximation of the curve
section it is drawnover. Also∆xi neednotbe the same for all valuesof i. Whatwewill do is to approximate
the curve with n rectangles. As the widths of the partitions get smaller and n increases, we get closer to
the actual areas

Since f is Riemann integrable:

16Proof of the second part, Fundamental theorem of calculus, Wikipedia
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lim
∥∆xi∥→0

F (b)− F (a) = lim
∥∆xi∥→0

n∑
i=1

[f(ci)∆xi] (6.100)

F (b)− F (a) = lim
∥∆xi∥→0

n∑
i=1

[f(ci)∆xi] (6.101)

F (b)− F (a) =

∫ b

a

f(x)dx (6.102)

Independence of Path & Conservative Fields

17 Wehave already known that the vector field is the gradient of a scalar field. The Fundamental Theorem
of Calculus of single-variable in the case of 2 variables can be derived as follows:

∫
C

F · dR =

∫
C

∇f · dR (6.103)

=

∫ b

a

(
∇f · dR

dt

)
dt (6.104)

=

∫ b

a

[(
∂f

∂x
x̂+

∂f

∂y
ŷ

)
· d(xx̂+ yŷ)

dt

]
dt (6.105)

=

∫ b

a

(
∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t

)
dt (6.106)

=

∫ b

a

d

dt
f(x, y)dt (6.107)

= f(b)− f(a) (6.108)

Theorem 8 (Fundamental Theorem of Calculus for Line Integrals)

If a vector field F is the gradient of some scalar field f in a regionR, so that F = ∇f inR, and if
C is any piecewise smooth curve in R with initial and final points A and B, then

∫
C

F · dR = f(B)− f(A) (6.109)

The right side of the Eq. 6.109 depends only on the points A andB and not at all on the path C that joins
them. The line integral on the left side of Eq. 6.109 therefore has the same value for all paths C from A
to B. This can be expressed by saying that the line integral of a gradient field is independent of the path

. Next, it is clear from Eq. 6.109 that if C is a closed path, then

∮
C

F · dR = 0 (6.110)

17Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 758
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These argument show that

Integral is independent of path

Gradient field

Integral around closed path is zero

Figure 6.6: The symbol⇒means “implies”

We are going to show that these 3 properties are equivalent, in the sense that each implies the other two.

Suppose that the line integral of the vector field F is independent of the path. We shall approve that the
line integral of the vector field F around a closed path is zero.

We examine the figure below, in which two pointsA andB are chosen on the closed pathC. These points
divide C into paths C1, from A to B, and C2, from B to A.

A
B

C1 →

← C2

Since both C1 and−C2 are paths from A to B, the assumption of independence of path implies that

∫
C1

F · dR =

∫
−C2

F · dR = −
∫
C2

F · dR︸ ︷︷ ︸
Eq. 6.57

(6.111)

It them follows that

∫
C1

F · dR+

∫
C2

F · dR =

∮
C

F · dR = 0 (6.112)

Then we can easily reverse this argument to show that the integral from A to B is independent of the
path
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Integral is independent of path

Gradient field

Integral around closed path is zero

Figure 6.7: The updated Fig. 6.6

To complete the proof of the equivalence of the 3 properties, it suffices to show that ifF is a vector fioeld
whose line integral is independent of path, then F = ∇f for some scalar field f . To do this, we choose a
fixed point (x0, y0) and an arbitrary point (x, y). Given any path from C from (x0, y0) to (x, y), because we
assume the hypothesis of independence of path, we can unambiguously define the function f(x, y) by

f(x, y) =

∫
C

F · dR =

∫ (x,y)

(x0,y0)

F · dR (6.113)

(x0, y0)

(x, y)

F has the usual form of F = M(x, y)i+N(x, y)j so that

f(x, y) =

∫ (x,y)

(x0,y0)

M(x, y)dx+N(x, y)dy (6.114)

Let’s first hold y fixed and move along the x-direction by∆x. By The Fundamental Theorem of Calculus,
Eq 6.114 implies

f(x+∆x, y)− f(x, y) =

∫ (x+∆x,y)

(x,y)

Mdx (6.115)

so

∂f

∂x
= lim

∆x→0

f(x+∆x, y)− f(x, y)

∆x
= lim

∆x→0

1

∆x

∫ (x+∆x,y)

(x,y)

Mdx = M (6.116)

Similarly

∂f

∂y
= N (6.117)
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so

∂f

∂x
i+

∂f

∂y
j =

(
∂

∂x
i+

∂

∂y
j

)
f = ∇f = Mi+Nj = F (6.118)

Integral is independent of path

Gradient field

Integral around closed path is zero

Figure 6.8: The updated Fig. 6.7

A force that has one of 3 properties above is called conservative.

6.1.5 Green’s Theorem

Proof of Green’s Theorem

Green did not actually derive the form of “Green’s theorem” which appears in the form we see to-
day; rather, he derived a form of the “divergence theorem”, which appears on pages 10 - 12 of his
An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. A
proof of the theorem was finally provided in 1851 by Bernhard Riemann in his inaugural disserta-
tion: Bernhard Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer verän-
derlichen complexen Grösse (Basis for a general theory of functions of a variable complex quantity),
(Göttingen, (Germany): Adalbert Rente, 1867); see pages 8 - 9.a

Having formulating the Riemannian Geometry, Riemann laid the foundations of the mathematics
of General Relativityb

Aseparatepart hasbeendedicated toRiemannianGeometrywhich shall include the rigorousproof
of Green’s theorem

Given that, the purpose of this section is solely for revealing the nature of the link between line
integrals and double integralsc

aGreen’s theorem, Wikipedia
bBernhard Riemann, Wikipedia
cCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 764

Let’s look at a rectangular path like the one shown below
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Draw rectangular box

Missing

figure

∮
C

Mdx+Ndy =

∫∫
R

[
∂N

∂x
− ∂M

∂y

]
dA (6.119)
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Chapter 7

Maxwell’s Equations

Does the Electromagnetic Field physically exist?

“There exists a model of the universe which includes a field known as the Electromagnetic Field.
This model does a remarkably good job of predicting the observations we make in the world. It
does so good at making such predictions that it is often phrased as ’existing in the world”a

ahttps://philosophy.stackexchange.com/a/28010

7.1 Gauss’s Law for Electic Fields

There are two kinds of electric field:

1. the electrostatic field produced by electric charge

2. the induced electric field produced by a changing magnetic field

Gauss’s law for electric fields deals with the electrostatic field. It relates the spatial behavior of the elec-
trostatic field to the charge distribution that produces it. The integral form is generally written like this:

7.1.1 The Electric Field

To understand Gauss’s law, we first have to understand the concept of the electric field. In some physics
and engineering books, no direct definition of the electric field is given; instead we see a statement that
an electric field is “said to exist” in any region in which electrical forces act. But what exactly is an electric
field? This question has deep philosophical significance and it is not easy to answer1. It traces all the way
back to a person named Michael Faraday who is believed to discover the concept of an electric field.

While Faraday did not develop a complete mathematical description of the electric field, his concept laid
the groundwork for later scientists to quantify the electric field using mathematical equations. The book
by Michael Faraday that introduced the concept of the electric field is called Experimental Researches in
Electricity, particularly in its Eleventh Series, a chapter of the book.

Faraday conducted an experiment using two long coils. Let’s call themcoilsA andB. CoilAwas connected
to a battery source while coil B was connected to a falavanometer, which measures the current in B. He
discovered that, when coils were long enough and battery source was strong enough, the falavanometer

1Fleisch, A Student’s Guide to Maxwell’s Equations, p. 3
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signaled a slight current passing through coil B at the moment of connecting coil A the battery. In addi-
tion, when coil A and the battery was disconnected , the same amount of currrent in coilB was detected
again, but this time the current was in the opposite direction.2

2Experimental Researches In Electricity, Vol. 1, Faraday, Michael, 6 - 11
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Chapter 8

Euclid’s Elements

1. ᾿Ηιτήσѳω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐѳεῖαν γραμμὴν ἀγαγεῖν.

2. Καὶ πεπερασμένην εὐѳεῖαν κατὰ τὸ συνεχὲς ἐπ᾿ εὐѳείας ἐκβαλεῖν.

3. Καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσѳαι.

4. Καὶ πάσας τὰς ὀρѳὰς γωνίας ἴσας ἀλλήλαις εἶναι.

5. Καὶ ἐὰνεἰςδύοεὐѳείαςεὐѳεῖαἐμπίπτουσατὰςἐντὸςκαὶ ἐπὶτὰαὐτὰμέρηγωνίαςδύοὀρѳῶνἐλάσσοναςποιῇ, ἐκβαλλομένας
τὰς δύο εὐѳείας ἐπ᾿ ἄπειρον συμπίπτειν, ἐφ᾿ ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρѳῶν ἐλάσσονες.
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