Todo list

	Prove the theorem	21
	Study notes on Riemannian Geomery	37
	Prove the Properties of Open Subsets of a Metric Space (Lee, p.397)	39
	Prove the Properties of Closed Subsets of a Metric Space (Lee, p.397)	39
	Finish the proof	39
Fig	gure: Draw rectangular box	63

Contents	
I Special Relativity	
Chapter 1 Einstein's Original Paper on "Special Relativity" 1.0.1 Reading Notes 5 §1. Definition of Simultaneity 66 §2. Something Stops Working 7 §3. Lorentz Transformation - Quantifying Non-Simultaneity 9 II A First Course on General Relativity Chapter 2 Special Relativity 2.1 Fundamental principles of special relativity theory (SR) 17 2.1.1 On "Principle of relativity (Galileo)" 17 Galilean invariance	
Chapter 3 Topology	
3.1 Metric Spaces 25 3.2 Indefinite Inner Products 29	

31

Chapter 4 Linear Algebra 4.1 Linear Algebra 31 4.1.1 Eigenvalues and Eigenvectors 32 Matrix Diagonalization	32
Chapter 5 Riemannian Geometry 5.1 What are Manifolds? 37 5.1.1 Intuitive Meaning 37 5.1.2 Formal Definition of Manifolds 38 IV Electromagnetism	32
Chapter 6 Mathematics 6.1 Differential Calculus 45 6.1.1 Gradient 47 6.1.2 Divergence 48 The Meaning of Divergence 6.1.3 Curl 49 The Cross Prudct of Two Vectors Curl 6.1.4 Line Integrals 53 The Fundamental Theorem of Calculus	48 49 52 54 60
Chapter 7 Maxwell's Equations 7.1 Gauss's Law for Electic Fields 65 7.1.1 The Electric Field 65	
Chapter 8 Euclid's Elements	

Part I Special Relativity

Chapter 1

Einstein's Original Paper on "Special Relativity"

The source of this chapter is the original German version of Einstein's paper on Special Relativity

It is not recommended to read English translations because many translators, thinking they were smart enough, unethically tempered the original version dramatically, and thus disguised the readersa

^asource

Reading the original paper requires the prerequisites of

Michelson-Morley Experiment

- An excellent experiment intro
- What I care most about this experiment is the way we handle "unsolvable" problems. Michelson-Morley experiment had led to extensive followups trying to explain what was seen in the experiment. All the mediocre conclusion simply said: "Dude, we don't know." Albert Einstein innovated a new era of Physics out of this conflict. When a problem seems to lead to a dead end, it's time to innovate; it's time to take on the risk and bring the human into a new world of new opportunities!

Maxwell's Electrodynamics

Reading Notes... 1.0.1

... of the Paper

§1. Definition of Simultaneity

Definition 1: Simultaneity

If an event occurs at (t, x, y, z), then all observers would see this event at (t, x', y', z'), where $x \neq x'$, $y \neq y'$, and $y \neq y'$

For example, If I say that "a train arrives here at 7 o'clock," that means when a clock on that train ticks to 7, my hand watch also points at 7 sharp. There is no "delay" caused by information propagation between the train clock and my hand watch; they just happen to "synchronize" that way. We say the 7 on the hand watch and the 7 on the train are **simulaneous events**

This definition is ideal when the clock and the attached event are located at the same place because we can read the clock precisely at that location. But what if there are series of events at other locations and we need to link them temporally? Can we simply tell which of the two events happened first simply by comparing the time we see the incident light of the two events? No, because, as Einstein said, "such an assignment has the drawback that it is not independent of the position of the observer". For example, suppose you are reading this PDF document at 9 am in the morning; 20 minutes later your special apparatus on your desk detected the light of a collision of two stars in universe that happend 2 billion light years away. In this case, can we say you saw this PDF file earlier than then star collsion?

What is missing here is the ordering of multiple events. In other words, if we could somehow "synchronize" the clock located at us, the PDF file, and the star collision, we will be able to say, by looking at all 3 clocks synchronized, the star collision happened first.

Einstein offered an approch to synchronize the clocks in the following way. He got inspired by Differential Geometry by realizing that the clock C_1 of the event located at the *vicinity* of another clock C_2 is infinitesimally synchronized with clock C_2 . If there is a clock at point A of space, then an observer located at A can evaluate the time of the events in the immediate vicinity of A by simply look at their hand watch. If there is also a clock at point B, then the time of the events in the immediate vicinity of B can likewise be evaluated by an observer located at B. But it is not possible to compare the time of an event at A with one at B without a further stipulation; thus far we have only defined an "A-time" and a "B-time" but not a "time" common to A and B. The latter can now be determined by establishing by definition that the "time" needed for the light to travel from A to B is equal to the "time" it needs to travel from B to A. Thus we have the following definition

Definition 2: Synchronism (Location-Independent)

Suppose a ray of light leaves from A toward B at "A-time" at t_A , is reflected from B toward A at "B-time" t_B , and arrives back at A at "A-time" t_A . The two clocks are synchronous by definition if

$$t_B - t_A = t_A' - t_B {(1.1)}$$

It follows naturally that

- 1. if the clock in B is synchronous with the clock in A, then the clock in A is synchronous with the clock in B, and
- 2. if the clock in A is synchronous with the clock in B as well as with the clock in C, then the clocks in B and C are also synchronous relative to each other

This is a very powerful assertion, because it states that for 2 clocks to be "synchronous", not only do they need to be ticking at the same rate, but also they must always be pointing at the exact same absolute instance of time, i.e. both must be both ticking at 9:00:00 am sharp, not one at 9:00:00 and the other at 9:00:03. Another example is that two clocks at Chicago and New York City are never synchronous.

Applying this Def. 2, we are able to solve the PDF-collision problem. Since the PDF and us are in pretty much vicinity of each other, we can approximate the two to be synchronous with each other. To synchronize with the star collison, our watch will need to "move backwards" in time by little more than 2 billion years. According to the transitivity law of Synchronism, the clocks of PDF and the collision are new synchronized. The ordering of the events should be pretty clear now.

The speed of light as a universal constant in empty space is thus:

$$V = \frac{2\overline{AB}}{t_A' - t_A} \tag{1.2}$$

and there is a BIG assumption: all clocks are at rest in a system at rest

With that, we have a pretty good mechanism to talk about series of events in a system happening at different time, because we know how to synchronize them

§2. Something Stops Working...

Principle of Relativity

The laws governing the changes of the state of any physical system do not depend on which one of two coordinate systems in uniform translational motion relative to each other these changes of the state are referred to

Principle of the Constancy of the Velocity of Light

Each ray of light moves in the coordinate system "at rest" with the definite velocity V independent of whether this ray of light is emitted by a body at rest or a body in motion

2 principles above along with the Def.2 shall present us an surprising result that a moving rod with a stationary length r_{AB} will be measured to have a different length measured by an moving observer

Suppose the rod is moving in the x-direction at a constant speed v. Let the length of the moving rod, measured in the system at rest, be denoted as r_{AB} , where A and B are the two ends of the rod. In addition, we imagine that the two ends (A and B) of the rod are equipped with clocks (C_1 and C_2) that are synchronous with the clocks of the system at rest. Hence, C_1 and C_2 are synchronous for the observer in the system at rest whose readings always correspond to the "time of the system at rest" at the

Classically

An observer co-moving with the rod measures this stationary rod to have a length of $t_B - t_A =$ $t_A'-t_B=rac{r_{AB}}{V}$, where V is the speed of light and t_B,t_A,t_A',t_B' are all drawn from Def.2.

Another stationary observer, who sees the rod moving, measures the length of the (moving) rod seeen from a system at rest. The light travels, due to Classical Intertia, at a speed of v+V, relative to the observer. The observer see the light reaches the other end of the rod at $\Delta t =$ $t_B - t_A$. The light ends up travelling a distance of $(v+V)\Delta t$; this distance must also equal to the sum of the stationary rod length plus the extra distance that the rod travels:

$$(v+V)\Delta t = r_{AB} + v\Delta t \tag{1.3}$$

Thus

$$t_B - t_A = \frac{r_{AB}}{V} \tag{1.4}$$

When the light reflects back:

$$(V - v)\Delta t = v\Delta t - r_{AB}$$
 (1.5)

$$t_A' - t_B = \frac{r_{AB}}{V}$$
 (1.6)

Therefore

$$t_B - t_A = t_A' - t_B$$
 (1.7)

Relativistically

An observer co-moving with the rod measures this stationary rod to have a length of t_B – t_A = $t_A'-t_B=rac{r_{AB}}{V}$, where V is the speed of light and t_B,t_A,t_A',t_B are all drawn from Def.2.

Another stationary observer, who sees the rod moving, measures the length of the (moving) rod seeen from a system at rest. The light travels, by the Principle of the Constant Speed of Light, at a speed of V, relative to the observer. The observer see the light reaches the other end of the rod at $\Delta t = t_B - t_A$. The light ends up travelling a distance of $V\Delta t$; this distance must also equal to the sum of the stationary rod length plus the extra distance that the rod travels:

$$V\Delta t = r_{AB} + v\Delta t \tag{1.8}$$

Thus

$$t_B - t_A = \frac{r_{AB}}{V - v}$$
 (1.9)

When the light reflects back:

$$V\Delta t = v\Delta t - r_{AB} \tag{1.10}$$

$$t_A' - t_B = \frac{r_{AB}}{V + v}$$
 (1.11)

Therefore

$$t_B - t_A \neq t_A' - t_B$$
 (1.12)

Now, let's further imagine that each clock of C_1 and C_2 has an observer co-moving with it, and that these observers apply to the two clocks the criterion for synchronism formulated in Def 2. Classically, both observer co-moving with the moving rod and the observer in the system at rest declare C_1 and C_2 to be synchronous

$$t_B - t_A = t_A' - t_B \tag{1.13}$$

Relativisically, however, observer co-moving with the moving rod, By Def. 2, finds C_1 and C_2 do not run synchronously

$$t_B - t_A \neq t_A' - t_B {(1.14)}$$

while the observer in the system at rest declare them synchronous, in this case

we have a contradiction

How do we resolve the contradiction?

There is No Absolute Simultaneity

Instead, two events that are simultaneous when observed from some particular coordinate system can no longer be considered simultaneous when observed from a system that is moving relative to that system

The fact that is no absolute conformance in simultaneity indicates that there must be some form of transformation where two simultaneous events are transformed to be simultaneous in another system. The next section explore this transformation which is famously called the "Lorentz transformation"

§3. Lorentz Transformation - Quantifying Non-Simultaneity

Let's imagine there are 2 coordinate systems, K and k, both "at rest" in their own right. Now let system k start moving in the increasing x-direction relative to K with a speed of v. Let's further image that K and k are contained within a "larger" coordinate system or space called S, where $S \neq K \neq k$. We now imagine the space S to be measured both from

the system K at rest by means of the measuring rod at rest; the measurement is obtained as (x, y, z), and

the moving system k by means of the measuring rod moving along with it; the measurement is obtained as (ξ, η, ζ)

In the setup above, we assign a measuring rod to both K and k. Further, all clocks in K are synchronized to have a time t and all clocks in k are also synchronized to have a time τ

For every event (x, y, z, t) measured in the system K at rest, there corresponds to a "fixed" or transformed event (ξ, η, ζ, τ) measured in the system k. Our target is to derive the relation between K(x, y, z, t) and $k(\xi, \eta, \zeta, \tau)$

In this setup, let's talk about how observer k measures things in K. Suppose there is a point at rest in K:(x,y,z). Let's denote this point measured from within system k as k:(x',y',z').

We will assume that the origins of k and K coincide initially^a. That is at $t_0=0$, $x=x^\prime$

^aThe Collected Papers of Albert Einstein, Vol.2, page 149

After some time t, since K is effectively moving to in the negative x-direction relative to k, observer in kwill now see this event further to the left, i.e. the coordinate of this event now becomes

$$x' = x + c - vt = x - vt (1.15)$$

c=0 because of the assumption we have made. Eq. 1.15 allow us to link systems k and K by a common attribute - x'. So let's start from here.

Looking at k only

Suppose that at time τ_0 a light ray is sent from the origin of the system k along the x-axis to x' and is reflected from there at time au_1 toward the origin, where it arrives at time au_2 ; we then must have

$$\tau_2 - \tau_1 = \tau_1 - \tau_0$$

$$\frac{1}{2}(\tau_0 + \tau_2) = \tau_1 \tag{1.16}$$

Since it is also true that $\tau_2 = \tau_0 + \underbrace{\frac{x'}{V-v}}_{Eq.~1.9} + \underbrace{\frac{x'}{V+v}}_{Eq.~1.11}$, by writing out the parameters of τ in Eq.1.16, we

have the following general equation of

$$\frac{1}{2} \left[\tau(0,0,0,t) + \tau \left(0,0,0,\tau_0 + \frac{x'}{V-v} + \frac{x'}{V+v} \right) \right] = \tau \left(x',0,0,t + \frac{x'}{V-v} \right)$$
 (1.17)

Taking the derivative of τ with respect to x' and applying the Chain Rule of

$$\frac{\partial \tau}{\partial x'} = \frac{\partial \tau}{\partial t} \frac{\partial t}{\partial x'}$$

give us

$$\frac{1}{2}\frac{\partial \tau}{\partial t} \left[\frac{1}{V - v} + \frac{1}{V + v} \right] = \frac{\partial \tau}{\partial x'} + \left(\frac{1}{V - v} \right) \frac{\partial \tau}{\partial t}$$
 (1.18)

which simplifies down to

$$\frac{\partial \tau}{\partial x'} + \frac{v}{V^2 - v^2} \frac{\partial \tau}{\partial t} = 0 \tag{1.19}$$

It should be noted that $\mathscr{L}=\frac{\partial}{\partial x'}+\frac{v}{V^2-v^2}\frac{\partial}{\partial t}$ is a Linear operator a because

$$\mathscr{L}(\tau_1 + \tau_2) = \frac{\partial(\tau_1 + \tau_2)}{\partial x'} + \frac{v}{V^2 - v^2} \frac{\partial(\tau_1 + \tau_2)}{\partial t}$$
(1.20)

$$=\frac{\partial \tau_1}{\partial x'}+\frac{\partial \tau_2}{\partial x'}+\frac{v}{V^2-v^2}\frac{\partial \tau_1}{\partial t}+\frac{v}{V^2-v^2}\frac{\partial \tau_2}{\partial t} \tag{1.21}$$

$$= \mathscr{L}(\tau_1) + \mathscr{L}(\tau_2) \tag{1.22}$$

and

$$\mathscr{L}(c\tau) = \frac{\partial c\tau}{\partial x'} + \frac{v}{V^2 - v^2} \frac{\partial c\tau}{\partial t} = c \left(\frac{\partial \tau}{\partial x'} + \frac{v}{V^2 - v^2} \frac{\partial \tau}{\partial t} \right) = c \mathscr{L}(\tau) \tag{1.23}$$

Therefore Eq.1.19 has a solution of the form b

$$\tau = f\left(\frac{v}{V^2 - v^2}x - t\right) \tag{1.24}$$

We shall declare that

$$\tau = \underbrace{f\left(\frac{v}{V^2 - v^2}x' - t\right)}_{Mathematics} = \underbrace{\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right)}_{Physics} \tag{1.25}$$

which assumes that transformation between τ and t must be linear which can be inferred by the following fundamental postulate:

Space and time are homogeneous^a

^aWhat proof do we have that the universe is homogenous? In physics we can't prove something like this. It must be a postulate - something we take as a fundamental assumption on which to base our theories. If the assumption is wrong then eventually we will find experimental evidence of this. What we can say is that currently there is no evidence for any lack of homegeneity or isotropy in the universe.

With Eq.1.25, we shall deduct the first 3 positional transformations in (ξ, η, ζ, τ) . For a light ray emitted at time $\tau = 0$ in the direction of increasing ξ , we have

$$\xi = V\tau = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \tag{1.26}$$

which, combined with Eq.1.9, gives

$$\xi = \varphi(v) \left(\frac{V^2}{V^2 - v^2} \right) x' \tag{1.27}$$

Analogously, by considering light rays moving along the two other moving axes while k is still moving in the x-direction:

$$\begin{cases} \eta = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ y^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \eta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}y$$

$$\begin{cases} \zeta = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ \chi' = 0 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \chi = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ \chi' = 0 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$\begin{cases} \zeta = V\varphi(v)\left(t - \frac{v}{V^2 - v^2}x'\right) \\ z^2 + (vt)^2 = (Vt)^2 \end{cases} \Rightarrow \zeta = \varphi(v)\frac{V}{\sqrt{V^2 - v^2}}z$$

$$x' = 0$$
(1.29)

Note that Eq.1.27, 1.28, and 1.29 are based on the assumption that k starts out at the same point of K's origin

^aSee Partial Differential Equations, Strauss, page 2 for definition of *Linearity*

^bSee Partial Differential Equations, Strauss, page 6

In a 1964 paper, Erik Christopher Zeeman showed that the Lorentz transformation can be proven by applying the homogeneity principle to equations that represent the corresponding quantities at rest. This shows that the Lorentz transformation must be linear in both space and time coordinates

$$\tau = \varphi(v) \left[t - \frac{v}{V^2 - v^2} (x - vt) \right] \tag{1.30}$$

$$= \varphi(v) \left(\frac{V^2 t - v^2 t - vx + v^2 t}{V^2 - v^2} \right)$$
 (1.31)

$$=\varphi(v)\left(\frac{V^2t-vx}{V^2-v^2}\right) \tag{1.32}$$

$$= \varphi(v) \frac{V^2}{V^2 - v^2} \left(t - \frac{v}{V^2} x \right)$$
 (1.33)

$$\xi = \varphi(v) \left(\frac{V^2}{V^2 - v^2}\right) (x - vt) \tag{1.34}$$

$$\eta = \varphi(v) \frac{V}{\sqrt{V^2 - v^2}} y \tag{1.35}$$

$$\zeta = \varphi(v) \frac{V}{\sqrt{V^2 - v^2}} z \tag{1.36}$$

(1.37)

It does not lose generality to say if k is moving relative to K at speed v then K is moving relative to k at speed v. Directly measuring coordinates in K is effectively the same thing as transforming (x,y,z,t) in K to (ξ,η,ζ,τ) and then back to (x,y,z,t) so we have along the x-axis:

$$x = \varphi(-v) \left(\frac{V^2}{V^2 - v^2}\right) \varphi(v) \left(\frac{V^2}{V^2 - v^2}\right) x = \varphi(v) \varphi(-v) \left(\frac{V^2}{V^2 - v^2}\right)^2 x \tag{1.38}$$

where v is the speed of K relative to K, which is clearly 0. Therefore

$$x = \varphi(v)\varphi(-v)\left(\frac{V^2}{V^2 - 0^2}\right)^2 x = \varphi(v)\varphi(-v)x \tag{1.39}$$

which leads to the identity transformation of

$$\varphi(v)\varphi(-v) = 1 \tag{1.40}$$

Let's place a rod of length l at the origin of k perpendicular to ξ -axis. If k is moving to the x-direction relative to K at speed v, the measurement of the rod length, which we denote y_1 , in K satisfy

$$l = \varphi(v) \frac{V}{\sqrt{V^2 - v^2}} y_1 \tag{1.41}$$

By symmetry

$$l = \varphi(-v)\frac{V}{\sqrt{V^2 - v^2}}y_1 \tag{1.42}$$

$$\varphi(v) = \varphi(-v) \tag{1.43}$$

Combining 1.43 and 1.40 leads to

$$\varphi(v) = \pm 1 \tag{1.44}$$

By definition we know l>0 , $y_1>0$, and V>0 , therefore,

$$\varphi(v) = 1 \tag{1.45}$$

Since we focus on the x-direction only, it is our intuition that nothing shall change in y or z direction, i.e.

$$\eta = y \tag{1.46}$$

$$\zeta = z \tag{1.47}$$

Given that Eq. 1.25, 1.27, 1.28, 1.29 becomes

$$\tau = t - \frac{v}{V^2 - v^2} x' \tag{1.48}$$

$$\xi = \left(\frac{V^2}{V^2 - v^2}\right) x' \tag{1.49}$$

Part II

A First Course on General Relativity

Chapter 2

Special Relativity

2.1 Fundamental principles of special relativity theory (SR)

2.1.1 On "Principle of relativity (Galileo)"

Galilean invariance

Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other words, all frames related to one another by such a transformation are inertial (meaning, Newton's equation of motion is valid in these frames).¹ The proof has been given by the book on page 2.

2.2 Construction of the coordinates used by another observer

2.2.1 Why would the tangent of the angle is the speed in Fig. 1.2?

Suppose $\mathcal O$ and $\bar{\mathcal O}$ both start out at the same position where $\bar{\mathcal O}$ moves along the x at some speed. After t_1 , observer $\mathcal O$ sees $\bar{\mathcal O}$ at position x_1 :

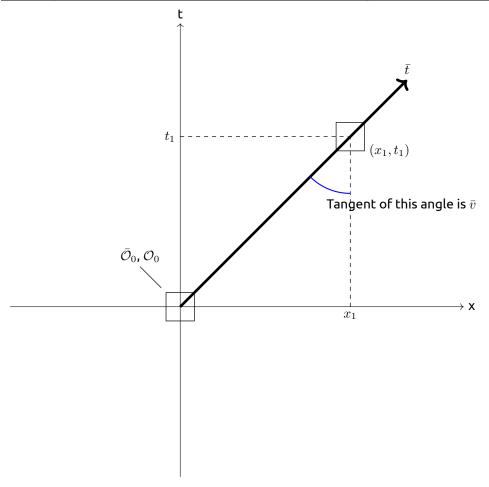
$$\bar{\mathcal{O}}_1 = (x_1, t_1)$$

Observer $\bar{\mathcal{O}}$, however, still sees themself at x=0:

$$\bar{\mathcal{O}}_1 = (0, t_1)$$

By definition where " \bar{t} is the locus of events at constant $\bar{x}=0$ ", \bar{t} is the straight line that passes the origin and the (x_1,t_1) :

¹Galilean invariance



2.3 Invariance of the interval

Why $(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 - (\Delta t)^2 = 0$ for two events in the same light beam?

Let's say, in a simplified 1D case, event $\mathcal{E}=(x_0,t_0)$ and $\mathcal{P}=(x_1,t_1)$.

$$(\Delta x)^2 - (\Delta t)^2 = (x_1 - x_0)^2 - (t_1 - t_0)^2$$

Since the speed of light is 1,

$$(x_1 - x_0)^2 - (t_1 - t_0)^2 = (x_1 - x_0)^2 - (t_1 \times 1 - t_0 \times 1)^2 = (x_1 - x_0)^2 - (x_1 - x_0)^2 = 0$$

Why does the equation contains only $M_{\alpha\beta}+M_{\beta\alpha}$ terms when $\alpha\neq\beta$ which quarantees $M_{\alpha\beta}=M_{\beta\alpha}$?

$$\Delta \bar{s}^{2} = \sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha} \right) \left(\Delta x^{\beta} \right)$$

Before spending too much time on expanding the equation, we can pick up a pair of indices of $(\alpha, \beta) = (\alpha^*, \beta^*)$ where $\alpha^* \neq \beta^*$. Then we would definitely have the following 2 terms in the expansion:

$$\boldsymbol{M}_{\alpha^*\beta^*} \left(\Delta x^{\alpha^*}\right) \left(\Delta x^{\beta^*}\right)$$

$$M_{\beta^*\alpha^*} \left(\Delta x^{\beta^*}\right) \left(\Delta x^{\alpha^*}\right)$$

Since

$$\left(\Delta x^{\alpha^*}\right)\left(\Delta x^{\beta^*}\right) = \left(\Delta x^{\beta^*}\right)\left(\Delta x^{\alpha^*}\right)$$

We can then group these 2 terms and factor out the product, leaving

$$\left(\Delta x^{\alpha^*}\right)\left(\Delta x^{\beta^*}\right)\left(\boldsymbol{M}_{\alpha^*\beta^*}+\boldsymbol{M}_{\beta^*\alpha^*}\right)$$

The terms of expanded $\Delta \bar{s}^2$ can be expressed in a matrix of

$$\begin{bmatrix} \boldsymbol{M}_{00} \Delta x^0 \Delta x^0 & \boldsymbol{M}_{01} \Delta x^0 \Delta x^1 & \boldsymbol{M}_{02} \Delta x^0 \Delta x^2 & \boldsymbol{M}_{03} \Delta x^0 \Delta x^3 \\ \boldsymbol{M}_{10} \Delta x^1 \Delta x^0 & \boldsymbol{M}_{11} \Delta x^1 \Delta x^1 & \boldsymbol{M}_{12} \Delta x^1 \Delta x^2 & \boldsymbol{M}_{13} \Delta x^1 \Delta x^3 \\ \boldsymbol{M}_{20} \Delta x^2 \Delta x^0 & \boldsymbol{M}_{21} \Delta x^2 \Delta x^1 & \boldsymbol{M}_{22} \Delta x^2 \Delta x^2 & \boldsymbol{M}_{23} \Delta x^2 \Delta x^3 \\ \boldsymbol{M}_{30} \Delta x^3 \Delta x^0 & \boldsymbol{M}_{31} \Delta x^3 \Delta x^1 & \boldsymbol{M}_{32} \Delta x^3 \Delta x^2 & \boldsymbol{M}_{33} \Delta x^3 \Delta x^3 \end{bmatrix}$$

Because the off-diagonal terms always appear in pairs above, we could effectively replace them with their mean value:

$$oldsymbol{M}_{lpha^*eta^*} = oldsymbol{M}_{eta^*lpha^*} = rac{(oldsymbol{M}_{lpha^*eta^*} + oldsymbol{M}_{eta^*lpha^*})}{2}$$

where $\alpha^* \neq \beta^*$. And since $M_{\alpha\beta} = M_{\beta\alpha}$ if $\alpha = \beta$, we conclude that

$$oldsymbol{M}_{lphaeta} = oldsymbol{M}_{etalpha}$$
 for all $lpha$ and eta

Why do we have the 2nd term in equation

$$\Delta \bar{s}^2 = \boldsymbol{M}_{00} (\Delta r)^2 + \left[2 \left(\sum_{i=1}^3 \boldsymbol{M}_{0i} \Delta x^i \right) \Delta r \right] + \sum_{i=1}^3 \sum_{i=1}^3 \boldsymbol{M}_{ij} \Delta x^i \Delta x^j$$

$$=\sum_{\alpha=0}^{0}\sum_{\beta=0}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)+\sum_{\alpha=0}^{3}\sum_{\beta=0}^{0}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)+\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)\tag{2.2}$$

$$=\sum_{\beta=0}^{3}\boldsymbol{M}_{0\beta}\Delta t\left(\Delta x^{\beta}\right)+\sum_{\alpha=0}^{3}\boldsymbol{M}_{\alpha 0}\left(\Delta x^{\alpha}\right)\Delta t+\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha \beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)\tag{2.3}$$

$$=\boldsymbol{M}_{00}\left(\Delta t\right)^{2}+\sum_{\beta=1}^{3}\boldsymbol{M}_{0\beta}\Delta t\left(\Delta x^{\beta}\right)+\sum_{\alpha=1}^{3}\boldsymbol{M}_{\alpha0}\left(\Delta x^{\alpha}\right)\Delta t+\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x^{\alpha}\right)\left(\Delta x^{\beta}\right)\tag{2.4}$$

$$= \boldsymbol{M}_{00} \left(\Delta t\right)^{2} + 2 \left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x^{i}\right) \right] + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha}\right) \left(\Delta x^{\beta}\right)$$
(2.5)

Why would $M_{0i}=0$ for i=1,2,3 and $M_{ij}=-M_{00}\delta_{ij}$ in Equation 2.5?

The answer is: not necessarily. We are probably looking at a wrong problem.

The solution to exercise 1.8 takes $\Delta x_1 = -\Delta x_2$ to simplify the equation 2.10. This is not sufficient, because what if $\Delta x_1 \neq -\Delta x_2$? This box takes a general approach where we **do** not assume any relationship between Δx_1 and Δx_2

Note that this statement is based on the aforementioned assumption that $\Delta \bar{s}^2 = \Delta s^2 = 0$, which has been proved here. Therefore, by 2.5, we have

$$\Delta \bar{s}^2(\Delta t, \Delta x_1) - \Delta \bar{s}^2(\Delta t, \Delta x_2) \tag{2.6}$$

$$= \boldsymbol{M}_{00} \left(\Delta t\right)^{2} + 2 \left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x^{i}\right) \right] + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha}\right) \left(\Delta x^{\beta}\right)$$
(2.7)

$$=2\left[\sum_{i=1}^{3}\boldsymbol{M}_{0i}\Delta t\left(\Delta x_{1}^{i}\right)\right]+\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x_{1}^{\alpha}\right)\left(\Delta x_{1}^{\beta}\right)-$$

$$2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{2}^{i}\right)\right] - \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x_{2}^{\alpha}\right) \left(\Delta x_{2}^{\beta}\right)$$
(2.8)

$$=\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x_{1}^{\alpha}\right)\left(\Delta x_{1}^{\beta}\right)-\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left(\Delta x_{2}^{\alpha}\right)\left(\Delta x_{2}^{\beta}\right)+$$

$$2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{1}^{i}\right)\right] - 2\left[\sum_{i=1}^{3} \boldsymbol{M}_{0i} \Delta t \left(\Delta x_{2}^{i}\right)\right]$$
(2.9)

$$=\sum_{\alpha=1}^{3}\sum_{\beta=1}^{3}\boldsymbol{M}_{\alpha\beta}\left[\left(\Delta x_{1}^{\alpha}\right)\left(\Delta x_{1}^{\beta}\right)-\left(\Delta x_{2}^{\alpha}\right)\left(\Delta x_{2}^{\beta}\right)\right]+2\left[\sum_{i=1}^{3}\boldsymbol{M}_{0i}\Delta t\left(\Delta x_{1}^{i}-\Delta x_{2}^{i}\right)\right]=0\tag{2.10}$$

We won't be able to go further unless with some assumed relationships between Δx_1^i and Δx_2^i .

But since we do not assume any relations between them...

...let's step back and re-think about this problem then and forget about Δx_1^i and Δx_2^i .

We go through all these for the proof of invariance of the interval. This is to work out a relation between Δs^2 and $\Delta \bar{s}^2$. The **detail** is about Δx_1^i and Δx_2^i but the **goal** is to derive some form of

$$\Delta \bar{s}^{2} = f\left(\Delta s^{2}\right) = \sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} \boldsymbol{M}_{\alpha\beta} \left(\Delta x^{\alpha}\right) \left(\Delta x^{\beta}\right)$$

where

$$\Delta s^2 = -(\Delta t)^2 + \sum_{i=1}^{3} (\Delta x^i)^2$$

Let's work on $f(\Delta s^2)$ directly toward that goal then

Assuming $\Delta \bar{s}^2 = \Delta s^2 = 0$, we have $\Delta t = \pm \Delta x$; plugging it into Eq. 2.5 gives us

$$\Delta \bar{s}^{2} = M_{00} \sum_{i=1}^{3} (\Delta x^{i})^{2} + 2 \left[\sum_{i=1}^{3} M_{0i} (\Delta x^{i})^{2} \right] + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} M_{\alpha\beta} (\Delta x^{\alpha}) (\Delta x^{\beta})$$
 (2.11)

$$= (\boldsymbol{M}_{00} + 2\boldsymbol{M}_{0i}) \sum_{i=1}^{3} (\Delta x^{i})^{2} + \sum_{\alpha=1}^{3} \sum_{\beta=1}^{3} \boldsymbol{M}_{\alpha\beta} (\Delta x^{\alpha}) (\Delta x^{\beta})$$
 (2.12)

Eq.2.12 seems to suggest a linear relationship between Δs^2 and $\Delta \bar{s}^2$. How do we go about proving it? We now start the formal proof of Invariance of Interval

Theorem 1 (Proportionality of ds^2 and ds'^2)

Let n, p > 1 be integers, d := n + p and V a vector space over \mathbb{R} of dimension d. Let h be an indefinite-inner product on V with signature type (n,p). Suppose g is a symmetric bilinear form on V such that the null set of the associated quadratic form of h is contained in that of q (i.e. suppose that for every $v \in V$, if h(v,v) = 0 then g(v,v) = 0). Then, there exists a constant $C \in \mathbb{R}$ such that g=Ch. Futhermore, if we assume $n\neq p$ and that g also has signature type (n,p), then we have C > 0

Prove the theorem

The assumptions above on h means that $h: V \times V \to \mathbb{R}$ is a bilinear form which is symmetric and nondegenerate such that there exists an ordered basis $\{m{v_1},\dots,m{v_n},m{v_{n+1}},\dots,m{v_d}\}$ of V for which

$$h(\boldsymbol{v}_a,\boldsymbol{v}_b) = \begin{cases} -1 & a=b \text{, where } a,b \in \{1,\dots,n\} \\ 1 & a=b \text{, where } a,b \in \{n+1,\dots,d\} \\ 0 & \text{otherwise} \end{cases} \tag{2.13}$$

An equivalent way of saying this is that h has the matrix representation $\begin{bmatrix} -I_n & 0 \\ 0 & I_p \end{bmatrix}$ relative to the ordered basis $\{ {m v_1}, \dots, {m v_d} \}$ of V

If we are considering the special case where n=1, p=3 then we are talking about the situation of a matrix signature in 4-dimensions

Part III Mathematics

Chapter 3

Topology

The name of this division ("Topology") is in honor of, from my sincere respect, the great book by George F. Simmons, Introduction to Topology and Functional Analysis

Metric Spaces 3.1

Definition 3: Metric Space

Let X be a non-empty set. A **metric**^a on X is a real function d of ordered pairs of elements of X which satisfies the following conditions

$$d(x,y) \geq 0 \text{, and } d(x,y) = 0 \iff x = y$$

$$d(x,y) = d(y,x)$$
 (symmetry)

 $d(x,y) \leq d(x,z) + d(z,y)$ (the triangle inequality)

^aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.51

d(x,y) is called the *distance* between x and y. Thus a metric space consists of 2 objects:

- 1. a non-empty set X, and
- 2. a metric d on X

$$\{x_n\} = \{x_1, x_2, \cdots, x_n, \cdot\}$$
 (3.1)

be a sequence of points in X. We say that $\{x_n\}$ is **convergent** if there exists a point x in X such that either

1. for each $\epsilon>0$, there exists a positive integer n_0 such that $n\geq n_0\Rightarrow d(x_n,x)<\epsilon$, or, equivalently,

¹ Now let X be a metric space with metric d_i and let

¹Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.70

2. for each open sphere $S_{\epsilon}(x)$ centered on x, there exists a positive integer n_0 such that x_n is in $S_{\epsilon}(x)$ for all $n \geq n_0$

We say in this case that x_n converges to x and x is called the *limit* of the sequence $\{x_n\}$ and we sometimes write $x_n \to x$ in the form of

$$\lim x_n = x$$

Now let's consider two cases of convergence:

for each $\epsilon>0$, there exists a positive integer n_0 such that $n\geq n_0\Rightarrow d(x_n,x)<\epsilon$ (the same definition above)

for each $\epsilon>0$, there exists a positive integer n_0 such that $m\geq n_0\Rightarrow d(x_m,x)<\epsilon$

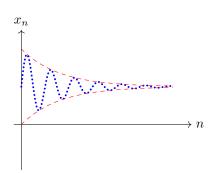
By the symmetry and triangle inequality of the Def. 3:

$$d(x_m, x_n) \le d(x_m, x) + d(x, x_n) = d(x_m, x) + d(x_n, x) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
(3.2)

for all $m, n \lg n_0$. Therefore, every convergent sequence $\{x_n\}$ has the following property:

For each $\epsilon > 0$, there exists a positive integer n_0 such that $m, n \geq n_0 \Rightarrow d(x_m, x_n) < \epsilon$

A sequence with this property is called a Cauchy sequence. Intuitively, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progress:



In addition, we have also shown that every convergent sequence is a Cauchy sequence. The converse of this, however, is not necessarily true. That is, a Cauchy sequence is not necessarily convergent. As an example, consider the subspace X=(0,1] of the real line where $x_n\in X$. The sequence defined by $x_n=\frac{1}{n}$ is easily seen to be a Cauchy sequence in this space, but it is not convergent, because the point $0\notin X$ is not a point of the space

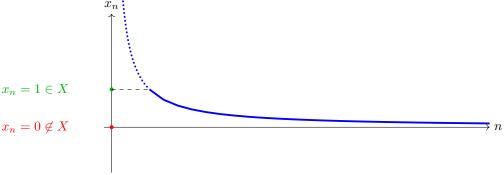


Figure 3.1: Here, the real numbers in the range of X = (0,1] takes on the values "y-axis". We use a solid line to denote the range of n values under the subspace of X. It really should be a dotted line because ncan only be integers. We do that in order to distinguish it from the range we are not concerned with, i.e. $X=(1,\infty)$

The notion of a convergent sequence is not intrinsic to the sequence itself, but also depends on the structure of the space in which it lies. A convergent sequence is not convergent "on its own"; it must converge to some point in the space...

...Sounds wordy? Let's put it this way: when the space has a hole in it. Like if you remove 0 from $\mathbb R$ like in the case above, then $\frac{1}{n}$ is a Cauchy sequence that doesn't converge.

We are now ready to introduce the concept of complete metric space, which we define as follows:

Definition 4: Complete Metric Space

A complete metric space is a metric space in which every Cauchy sequence is convergent

Definition 5: Linear Space

Let L be a non-empty set, and assume that each pair of elements x and y in L can be combined by a process called **addition** to yield an element z in L denoted by z = x + y. Assume also that this operation of addition satisfies the following conditions:

$$x + y = y + x$$

$$x + (y+z) = (x+y) + z$$

There exists in L a unique element, denoted by 0 and called the **zero element**, or the origin, such that x + 0 = x for every x

To each element x in L there corresponds a unique element in L, denoted by -x and called the negative of x, such that x + (-x) = 0.

We adopt the device of referring to the system of real numbers or to the system of complex numbers as the **scalers**. We now assume that each scalar α and each element x in L can be combined by a process called **scalar multiplication** to yield an element y in L denoted by $y = \alpha x$ in such a way that

$$\alpha(x+y) = \alpha x + \alpha y$$

$$(\alpha + \beta)x = \alpha x + \beta x$$

$$(\alpha\beta)x = \alpha(\beta x)$$

$$1 \cdot x = x$$

The albegraic system L defined by these operations and axioms is called a **linear space**^a

^aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

Depending on the numbers admitted as scalars (only the real numbers, or all the complex numbers), we distinguish when necessary between *real linear spaces* and *complex linear spaces*. A linear space is often called a *vector space* and its elements are spoken of as *vectors*.

Definition 6: Normed Linear Space

A **Normed Linear Space**^a is a linear space on which there is a **norm** defined, i.e. a function which assigns to each element x in the space a real number $\|x\|$ in such a manner that

$$||x|| > 0$$
, and $||x|| = 0 \iff x = 0$

$$||x + y|| \le ||x|| + ||y||$$

$$\|\alpha x\| = |\alpha| \|x\|$$

 a Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

Intuitively, a normed linear space is simply a linear space in which a notion of the distance from an arbitrary element to origin is defined.

Definition 7: Banach space

A **Banach space**^a is a normed linear space which is complete as a metric space.

^aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.81

One of the principal applications of the tory of Banach algebras develoed from Def. 3 to Def 7 is to the study of operators in Hilbert spaces.²

Definition 8: Hilbert Space

A **Hilbert space**^a is a complex Banach space whose norm arises from an inner product in which there is defined a complex function (v, w) of vectors v with the following properties:

$$(\alpha \mathbf{v} + \beta \mathbf{w}, \mathbf{u}) = \alpha(\mathbf{v}, \mathbf{u}) + \beta(\mathbf{w}, \mathbf{u})$$

²Introduction to Topology and Functional Analysis by Goerge F. Simmons, p.243

$$\overline{(\boldsymbol{v},\boldsymbol{w})} = (\boldsymbol{w},\boldsymbol{v})$$

$$(\boldsymbol{v}, \boldsymbol{v}) = \|x\|^2$$

^aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.245

A complex function^a is one whose range consists of complex numbers

If z=a+ib is a complex number, then its conjugate \overline{z} is defined by $\overline{z}=a+i(-b)^b$

^aIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.17

^bIntroduction to Topology and Functional Analysis by Goerge F. Simmons, p.53

Indefinite Inner Products 3.2

Definition 9: Indefinite Inner Product

Let \mathbb{C}^n be the n-dimensional complex Hilbert space consisting of all column vectors x with complex coordinate $x^{(j)}$, $j=1,2,\ldots,n$. The typical column vector x will be written in the form $x = \langle x^{(1)}, x^{(1)}, \dots, x^{(n)} \rangle$. The standard inner product in \mathbb{C}^n is denoted by (.,.). Thus,

$$(x,y) = \sum_{j=1}^{n} x^{(j)} \overline{y^{(j)}}$$
 (3.3)

where $x = \langle x^{(1)}, x^{(1)}, \dots, x^{(n)} \rangle$, $y = \langle y^{(1)}, y^{(1)}, \dots, y^{(n)} \rangle$

A function (.,.) from $\mathbb{C}^n \times \mathbb{C}^n$ to \mathbb{C} is called an **indefinite inner product** in \mathbb{C}^{na} if the following axioms are satisfied:

Linearity in the first araument:

$$[\alpha x_1 + \beta x_2, y] = \alpha [x_1, y] + \beta [x_2, y]$$
(3.4)

for all $x_1, x_2, y \in \mathbb{C}^n$ and all complex numbers $alpha, \beta$

Antisymmetry:

$$[x,y] = \overline{[y,x]} \tag{3.5}$$

for all $x, y \in \mathbb{C}^n$

Nondegeneracy: if [x,y]=0 for all $y\in\mathbb{C}^n$, then x=0

"Indefinite Linear Algebra and Applications, L. Rodman, Peter Lancaster, Israel Gohberg. 2005, p.7

Chapter 4

Linear Algebra

4.1 Linear Algebra

Definition 10: Vector Space

The space \mathbb{R}^n consists of all column vectors v with n components

^aIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 120

The components of v are real numbers, which is the reason for the letter \mathbb{R} . A vector whose n components are complex numbers lies in the space \mathbb{C}^n

Definition 11: Subspace

A **subspace**^a of a **vector space** is a set of vectors (including 0) that satisfies 2 requirements: If v and w are vectors in the subspace and c any scalar, then

 $oldsymbol{v} + oldsymbol{w}$ is in the subspace

cv is in the subspace

In other words, the set of vectors is "closed" under addition and multiplication - all linear combinations stay in the subspace

^aIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 122

Intuitively, we can visualize a subspace in the 3-dimensional space \mathbb{R}^3 . Choose a plane through the origin (0,0,0). That plane is a vector space in its own right. If we add two vectors in the plane, their sum is in the plane; if we multiply an in-plane vector by 2 or -5, it is still in the plane. This plane is a vector space **inside** \mathbb{R}^3 or is a subspace of the full vector space \mathbb{R}^3

Definition 12: Column Space

The **column space**, C(A), consists of all linear combinations of the columns, i.e. the combinations of all possible vectors Ax

The subspece C(A) is the "span" of matrix A

Definition 13: Span

A set of vectors spans a space if their linear combinations fill the space

Definition 14: Basis for a Vector Space

A **basis**^a for a vector space is a sequence of vectors with 2 properties

The basis vectors are linearly independent, and

they <mark>span</mark> the space

^aIntroduction to Linear Algebra, Strang, 4th Edition, 2009, p. 172

4.1.1 Eigenvalues and Eigenvectors

All matrices in this section are square

Almost all vectors change direction, when they are multiplied by a matrix A. Certain exceptional vectors x don't and are in the same direction as Ax. Those are the **eigenvectors**¹. By definition, the result of this multiplication shall be a number times the original x, i.e.

$$Ax = \lambda x \tag{4.1}$$

We call λ an **eigenvalue** of A.

The eigenvalue λ tells whether the special vector x is stretched (e.g. 2) or shrunk (e.g. $\frac{1}{2}$) or reversed (-1) or left unchanged (1) when multiplied by A. When $\lambda=0$, Then Ax=0x means this eigenvector x is in nullspace²

Matrix Diagonalization

Why do we study disgonalizing a matrix?

When x is an eigenvector, multiplication by A is just multipliation by a number λ : $Ax = \lambda x$. All the difficulties of matrices are swept away, because the matrix A turns into a diagonal matrix Λ when we use the eigenvectors properly.

Suppose a n by n matrix A has n linearly independent eigenvectors x_1, \ldots, x_n . Put them into the columns of an **eigenvector matrix** S. Multiplying A with S^3 :

Definition 15: Nullspace

The nullspace of A consists of all solutions to Ax = 0. These vectors x are in \mathbb{R}^n . The nullspace containing all solutions of Ax = 0 is denoted by N(A) (Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 132)

¹Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 283

³Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 298

$$AS = A \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}$$
 (4.2)

$$= \begin{bmatrix} \lambda_1 x_1 & \dots & \lambda_n x_n \end{bmatrix} \tag{4.3}$$

$$= \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda \end{bmatrix}$$
 (4.4)

$$= S \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$
 (4.5)

Let

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \tag{4.6}$$

Then

$$AS = S\Lambda$$
 or $S^{-1}AS = \Lambda$ or $A = S\Lambda S^{-1}$ (4.7)

It is important to keep in mind that S has an inverse because it's columns are linearly independent

We call Λ the **Eigenvalue Matrix**

Definition 16: Diagonalization

Suppose a n by n matrix A has n linearly independent eigenvectors x_1,\ldots,x_n . Then $S^{-1}AS$ is the eigenvalue matrix Λ

$$S^{-1}AS = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$
 (4.8)

Definition 17: Bilinear Form

Let F be a field and V a vector space over F. A bilinear form on V is a function $B:V\times V\to F$ that is linear in each variable when the other one is fixed. That is

$$B(v + v', w) = B(v, w) + B(v', w)$$
(4.9)

$$B(cv, w) = cB(v, w) \tag{4.10}$$

for all $v, v', w \in V$ and $c \in F$, and

$$B(v, w + w') = B(v, w) + B(v, w')$$
 (4.11)

$$B(v,cw) = cB(v,w) \tag{4.12}$$

for all $v, v, w' \in V$ and $c \in F$

We call B symmetric when

$$B(v,w) = B(w,v) \tag{4.13}$$

for all $v, w \in V^{\mathbf{a}}$

Definition 18: Linear Transformation

The transformation is **linear** if it meets these requirements for all v and w^a :

$$T(c\mathbf{v} + d\mathbf{w}) = cT(\mathbf{v}) + dT(\mathbf{w})$$
 (4.14)

for all c and d

 a Introduction to Linear Algebra, Strang, 4th Edition, 2009, p. 375

Definition 19: Field

A field is a set of elements in which a pair of operations called multiplication and addition is defined analogous to the operations of multiplication and addition in the real number system (which is itself an example of a field)a

^aA. Fields, Chapter I: Linear Algebra, Galois Theory: Lectures Delivered at the University of Notre Dame, Project Euclid

Definition 20: Group

A group^a is a non-empty set G together with a rule that assigns to each pair g and h of elements of G and element g * h such that

 $g*h\in G$, which we say G is **closed** under *

g*(h*k)=(g*h)*k for all $g,h,k\in G$, which we call * being **associative**

There exists an **identity** element $e \in G$ such that e * q = q * e for all $q \in G$

Every element $g \in G$ has an **inverse** g^{-1} such that $g * g^{-1} = g^{-1} * g = e$

^aIntroduction to Group Theory, Michael Wemyss

Definition 21: Vector Space (Field Theory)

If V is an additive abelian group with elements A,B,\ldots , F a field with elements a,b,\ldots , and if for each $a\in F$ and $A\in V$ the product aA denotes element of V, then V is called a **(left)** vector space over F if the following assumptions hold:

$$a(A+B) = aA + aB \tag{4.15}$$

$$(a+b)A = aA + bA \tag{4.16}$$

$$a(bA) = (ab)A$$
 (4.17)

$$1A = A \tag{4.18}$$

(4.19)

^aKeith Conrad

Chapter 5

Riemannian Geometry

This chapter was raised by the discussion of Green's Theorem

There are lots of texts around the topics of Riemannian Geometry. Here is a list of threads in which great people recommended good books on it

Riemannian and Pseudo-Riemannian Geometry

Beginner's book for Riemannian geometry

Need help finding a good book on Riemann Geometry

Introductory text on Riemannian geometry

One will need quite a solid backgound in topology, and especially differential geometry. I would recommend the book series by Lee: Introduction to topological manifolds / introduction to smooth manifolds/introduction to riemannian manifolds.¹

Study notes on Riemannian Geomery

5.1 What are Manifolds?

5.1.1 Intuitive Meaning

A manifold is a space that "looks like" regular old Euclidean space (like a line, a plane, 3d space, and so on) if we zoom in enough. More formally, every point in a manifold has a neighborhood that is homeomorphic to ("the same as") a neighborhood in some Euclidean space.

Easy examples include circles and spheres. A circle is curved in a global sense, but if you're realllllllly close to a circle, it looks like a line. Similarly, a sphere is curved in a global sense, but if you're really close, it looks like a plane (which is why the Earth looks flat when we live on it). If we cut off a little chunk of circle, it's essentially just a line (that is, it's the same as 1D Euclidean space). If you cut off a little chunk of sphere, it's essentially just a plane (that is, it's the same as 2D Euclidean space)².

¹Book recommendations

²r/explainlikeimfive

This sounds like a manifold is always 1 dimension higher than Euclidean space. In this sense, an n-dimensional Euclidean space \mathbb{R}^n is the **prototype** of an n-dimensional manifold.

It should be noted that the number "n" in manifold is not the same thing as the number of coordinates we use to locate a position in Euclidian space.

For instance, manifolds of dimension 1 are lines and curves. It is easy for us to see that a real line is an example of such case. The space curves, which are often diescribed parametrically by equations such as (x, y, z) = (f(t), g(t), h(t)), are also 1-dimensional manifolds. See Fig 5.1 below:

Figure 5.1: Intuitively, if we keep zooming in, we get a straight line on the spiral

In essence, an n-dimensional manifold "looks like" \mathbb{R}^n locally.

5.1.2 Formal Definition of Manifolds

 3 The chief problem with the intuitive introduction of manifolds is that it depends on having an "ambient Euclidean space" in which our n-manifold lives. This introduces a great deal of extraneous structure that is irrelevant to our purpose. Instead, we would like to view a manifold as a mathematical object in its own right, not as a subset of some larger space. They key concept that makes this possible is that of a topological space.

We begin by defining topological spaces, motivated by the open subset criterion form continuity metric spaces.

Definition 22: Continuous Mapping

If (M_1,d_1) and (M_2,d_2) are metric spaces and x is a point in M_1 , a map $f:M_1\to M_2$ is said to be **continous at** x if for any $\epsilon>0$ there exists $\delta>0$ such that $d_1(x,y)<\delta$ implies $d_2(f(x),f(y))<\epsilon$ for all $y\in M_1$; and f is **continuous** if it is continuous at every point of M_1 ^a

^aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.398

Definition 23: Image

Let $f: X \to Y$ be a function. If $S \subset X$, the **image of** S **under** f, denoted by f(S), is the subset of Y defined by f(S)

$$f(S) = \{ y \subseteq Y : y = f(x) \text{ for some } x \in S \}$$

$$(5.1)$$

^aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.387

³Introduction to Topological Manifolds, John M. Lee, 2nd, P.19

Definition 24: Preimage

If T is a subset of Y, the **preimage of** T **under** f (also called the **inverse image**) is the subset $f^{-1}(T) \subseteq X$ defined by

$$f^{-1}(T) = \{x \in X : f(x) \in T\}$$
(5.2)

^aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.388

Definition 25: Open Subset

Let M be a metric space^a

For any $x \in M$ and r > 0, the **(open) ball of radios** r **around** x is the set

$$B_r(x) = y \in M : d(y, x) < r$$
 (5.3)

and the closed ball of radios r around x is

$$\overline{B}_r(x) = y \in M : d(y, x) \le r \tag{5.4}$$

A subset $A\subseteq M$ is said to be an **open subset of** M if it contains an open ball around each of its points

A subset $A \subseteq M$ is said to be a **closed subset of** M if $M \setminus A$ (set subtraction) is open

^aIntroduction to Topological Manifolds, John M. Lee, 2nd, P.397

Prove the Properties of Open Subsets of a Metric Space (Lee, p.397)

Prove the Properties of Closed Subsets of a Metric Space (Lee, p.397)

Theorem 2 (Open Subset Criterion for Continuity)

A map $f:M_1\to M_2$ between metric spaces is continuous if and only if the preimage of every open subset of M_2 is open; that is, whenever U is an open subset of M_2 , its preimage $f^{-1}(U)$ is open in M_1

Proof First assume f is continuous, and let $U \subseteq M_2$ be an open set.

Let $x \in M_1$ be an element of the preimage of U; that is, x is any point in

 $f^{-1}(U)=\{x\in M_1: f(x)\in U\}$. Since U is open, there exists some $r=\epsilon>0$ such that $B_\epsilon(\text{element in }U)=B_\epsilon(f^{-1}(U))\subseteq U$

Finish the proof

Part IV Electromagnetism

Why study Electromagnetism?

This question arose because I noteiced Einstein dedicated a huge portion of his famous Special Relativity paper on its application in Electromagnetism.

In fact, Einstein was trying ridiculously hard to unify his General Theory of Relativity with Electromagnetism^a. Why?

Relativity describes our Universe pretty good but works horribly in the microscopic world like subatomic particles, whereas Quantum Physics works from the opposite. Relativity is, in some sense, not complete

Those who are familiar with Maxwell's Equations know by heart that Electrodynamics is a beautifully *complete* and successful theory. It has become a king of paradigm for physicists: an ideal model that other theories strive to emulate.

Studying Electromagnetism is same thing as studying the standard model of Physics which shall guide my study of General Theory of Relativity.

 o ...Albert Einstein, who attempted to unify his general theory of relativity with electromagnetism ..., Wikipedia

Chapter 6

Mathematics

6.1 Differential Calculus

Theorem 3 (Fundamental Lemma a)

^aCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 680

Suppose that a function z=f(x,y) and its partial derivatives f_x and f_y are defined at a point (x_0,y_0) , and also through some neighborhood of this point. Suppose further that f_x and f_y are continuous at (x_0,y_0) . Then the increment Δz can be expressed in the form of

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$
(6.1)

where ϵ_1 and $\epsilon_2 \to 0$ as Δx and $\Delta y \to 0$

To prove this statement¹, we analyze the change Δz in 2 steps as shown in Fig. 6.1:

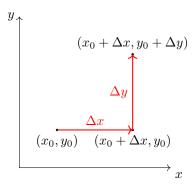


Figure 6.1: We assume $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ and $\Delta z = \Delta_1 z + \Delta_2 z$

- 1. changing x alone and moving from (x_0,y_0) to $(x_0+\Delta x,y_0)$, and then
- 2. changing y alone and moving from $(x_0 + \Delta x, y_0)$ to $(x_0 + \Delta x, y_0 + \Delta y)$

We denote the first change in z by $\Delta_1 z$, so that

¹Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 841

$$\Delta_1 z = f(x_0 + \Delta x, y_0) - f(x_0, y_0)$$
(6.2)

By The Mean Value Theorem², we can write this as

$$\Delta_1 z = \Delta x f_x(x_1, y_0) \tag{6.3}$$

where x_1 is between x_0 and $x_0 + \Delta x$. Smilary, if we denote the second part of the change in z by $\Delta_1 z$, so that

$$\Delta_2 z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0)$$
(6.4)

then

$$\Delta_2 z = \Delta y f_y(x_0 + \Delta x, y_1) \tag{6.5}$$

where y_1 is between y_0 and $y_0 + \Delta y$.

Now as Δx and $\Delta y \to 0$, $x_1 \to x_0$ and $y_1 \to y_0$. By the assumed continuity of f_x and f_y at (x_0, y_0) , we can write

$$f_x(x_1, y_0) = f_x(x_0, y_0) + \epsilon_1$$
 (6.6)

$$f_y(x_0 + \Delta x, y_1) = f_y(x_0, y_0) + \epsilon_2$$
 (6.7)

where ϵ_1 and $\epsilon_2 \to 0$ as Δx and $\Delta y \to 0$. Plugging Eq.6.6 into Eq.6.3 gives us

$$\Delta_1 z = \Delta x \left[f_x(x_0, y_0) + \epsilon_1 \right] = \Delta x f_x(x_0, y_0) + \Delta x \epsilon_1 \tag{6.8}$$

and similarly Eq.6.7 into Eq.6.5

$$\Delta_2 z = \Delta y \left[f_y(x_0, y_0) + \epsilon_2 \right] = \Delta y f_y(x_0, y_0) + \Delta y \epsilon_2 \tag{6.9}$$

2

Theorem 4 (The Mean Value Theorem^a)

^aCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 76

Let y = f(x) be a function with the following two properties:

- 1. f(x) is continuous on the closed interval [a, b]; and
- 2. f(x) is differentiable on the open interval (a, b)

Then there exists at least one point c in the open interval (a,b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or equivalently,

$$f(b) - f(a) = f'(c)(b - a)$$

Since we have assumed $\Delta z = \Delta_1 z + \Delta_2 z$

$$\Delta z = \Delta x f_x(x_0, y_0) + \Delta x \epsilon_1 + \Delta y f_y(x_0, y_0) + \Delta y \epsilon_2 = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$
 (6.10)

³ Now Let f(x,y,z) be a function of 3 variables defined throughout some region of three-dimensional space, and let P be a point in this region. At what rate does f change as we move away from P in a specified direction? In the directions of the positive x, y, and z-axes, we know that the rates of change off are given by the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, and $\frac{\partial f}{\partial z}$. But how do we calculate the rate of change of f if we move away from P in a direction that is not a coordinate direction?

Let P=(x,y,z) and $\mathbf{R}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$ being the position vector of P. If we move away from P to a nearby point $Q=(x+\Delta x,y+\Delta y,z+\Delta z)$, then the function will change by an amouth Δf . Let Δs denote the distance between P and Q, then we have

$$\frac{df}{ds} = \lim_{\Delta s \to 0} \frac{\Delta f}{\Delta s} \tag{6.11}$$

We further assume that f(x, y, z) has continuous partial derivatives with respect to x, y, and z.

Unless explicitly stated otherwise, all functions we deal with are always continuous in all of our discussions

The Fundamental Lemma enables us to write Δf in the form of

$$\Delta f = \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y + \frac{\partial f}{\partial z} \Delta z + \epsilon_1 \Delta x + \epsilon_2 \Delta y + \epsilon_3 \Delta z \tag{6.12}$$

As $\Delta s \to 0$, i.e. as $\Delta x \to 0$, $\Delta y \to 0$, and $\Delta z \to 0$, $\epsilon_1, \epsilon_2, \epsilon_3 \to 0$. Dividing Eq.6.12 by Δs gives

$$\lim_{\Delta s \to 0} \frac{\Delta f}{\Delta s} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds} + \frac{\partial f}{\partial z} \frac{dz}{ds}$$
(6.13)

Combing Eq.6.13 and 6.11 results in

$$\frac{df}{ds} = \frac{\partial f}{\partial x}\frac{dx}{ds} + \frac{\partial f}{\partial y}\frac{dy}{ds} + \frac{\partial f}{\partial z}\frac{dz}{ds}$$
(6.14)

Gradient 6.1.1

⁴ The theorem on partial derivaves states that

$$dT = \left(\frac{\partial T}{\partial x}\right) dx + \left(\frac{\partial T}{\partial y}\right) dy + \left(\frac{\partial T}{\partial z}\right) dz \tag{6.15}$$

³Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 681

⁴Introduction to Electrodynamics by Griffiths, 3rd, p. 13

Writing it in the dot product form:

$$dT = \left(\frac{\partial T}{\partial x}\hat{\boldsymbol{x}} + \frac{\partial T}{\partial y}\hat{\boldsymbol{y}} + \frac{\partial T}{\partial z}\hat{\boldsymbol{z}}\right) \cdot (dx\hat{\boldsymbol{x}} + dy\hat{\boldsymbol{y}} + dz\hat{\boldsymbol{z}})$$
(6.16)

$$= \nabla T \cdot d\mathbf{l} \tag{6.17}$$

where

$$\nabla T \equiv \frac{\partial T}{\partial x}\hat{\boldsymbol{x}} + \frac{\partial T}{\partial y}\hat{\boldsymbol{y}} + \frac{\partial T}{\partial z}\hat{\boldsymbol{z}}$$
(6.18)

is the **gradient** of T. We also call ∇ as the **vector operator** that *acts upon* T

The Geometrical Interpretation of the Gradient

The doc product 6.17 can be written as

$$dT = \nabla T \cdot d\mathbf{l} = |\nabla T||d\mathbf{l}|\cos\theta \tag{6.19}$$

We soon realize that the maximum change of T occurs when $\theta = 0$, therefore

The gradient ∇T points in the direction of the maximum increase of T, and its magnitude $|\nabla T|$ gives the slope (rate of increase) along this maximal direction

Now there are 3 ways the operator ∇ can act:

- 1. On a scalar function $T: \nabla T$ (the gradient, which we've discussed so far)
- 2. On a vector function via the dot product: $abla \cdot v$ (the **divergence**)
- 3. On a vector function via the cross product: $\nabla \times v$ (the **curl**)

6.1.2 Divergence

From the definition of ∇ , we construct the divergence

$$\nabla \cdot \boldsymbol{v} = \left(\frac{\partial T}{\partial x}\hat{\boldsymbol{x}} + \frac{\partial T}{\partial y}\hat{\boldsymbol{y}} + \frac{\partial T}{\partial z}\hat{\boldsymbol{z}}\right) \cdot (v_x\hat{\boldsymbol{x}} + v_y\hat{\boldsymbol{y}} + v_z\hat{\boldsymbol{z}})$$
(6.20)

$$= \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$
 (6.21)

The Meaning of Divergence

The Geometrical Interpretation of the Divergence

The divergence is a measure of how much the vector \boldsymbol{v} spreads out (diverges) from the point in question

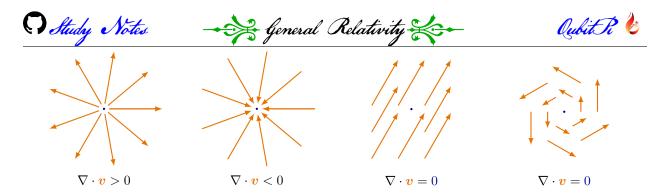


Figure 6.2: Divergence of vector fields

6.1.3 Curl

The Cross Prudct of Two Vectors

⁵ Many problems in geometry require us to find a vector that is perpendicular to each of two given vectors A and B. A routine way of doing this is provided by the *cross product* (or *vector product*) of A and B, denoted by $A \times B$. This cross product is very different from the dot product $A \cdot B$, because $A \times B$ is a vector while $A \cdot B$ is a scalar.

Consider two nonzero vectors A and B. Suppose their tails conincide and let θ be the angle from A to B (not from B to A) with $0 \le \theta \le \pi$.

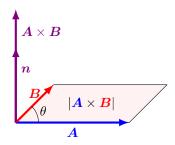


Figure 6.3: The plane defined by $oldsymbol{A}$ and $oldsymbol{B}$

These 2 vectors determine a plane, as shown in Fig. 6.3. We now choose the unit vector n which is normal (perpendicular) to this plane and whose direction is determined by the *right-hand thumb rule*⁶. This gives the direction of $A \times B$

Vectors A and B also defines a parallelogram in this plane of area $|A||B|\sin\theta$, which defines the magnitude of $A\times B$.

Definition 26: Cross Product of
$$A$$
 and B
$$A \times B = |A||B|\sin\theta \tag{6.22}$$

Our next objective is to develop a convenient formula for calculating A imes B where

$$A = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $B = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ (6.23)

We need to know that the cross product possesses the following algebraic properties

⁵Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 640

⁶This means that if the right hand is placed so that the thumb is perpendicular to the plane of A and B and the fingers curl from A to B in the direction of angle θ , then n points in the same direction as the thumb of this hand

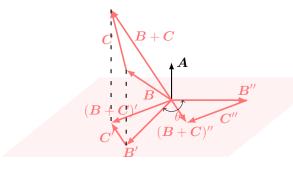
$$(c\mathbf{A}) \times \mathbf{B} = c(\mathbf{A} \times \mathbf{B}) = \mathbf{A} \times (c\mathbf{B}), \tag{6.24}$$

$$A \times (B + C) = A \times B + A \times C, \tag{6.25}$$

$$(A+B) \times C = A \times C + B \times C \tag{6.26}$$

Property 6.24, also called *homogeneous* in each argument⁷, is easily established directly from Definition 26.

The proof of Eq. 6.25 starts with a unit vector \hat{n} and 3 arbitrary vectors B, C, and B + C. $\hat{n} \times (B + C)$ can be constructed by performing the following two operations:



- 1. Project B, C, and (B+C) onto the plane perpendicular to \hat{n} to obtain a vector B', C', and (B+C)'. By the nature of projection, the head and tails of B', C', and (B+C)' still coincide. Then,
- 2. rotate the triangle formed by B', C', and (B+C)' by 90 degrees counterclockwise with respect to the tail of \hat{n} to obtain B'', C'', and (B+C)'', which still form a triangle.

Therefore, we have

$$(\boldsymbol{B} + \boldsymbol{C})'' = \boldsymbol{B}'' + \boldsymbol{C}''$$

What this means is, geometrically, the operation of $\hat{n} \times (B+C)$ and $\hat{n} \times B + \hat{n} \times C$ produces the same result, i.e. the vector (B+C)''. Therefore

$$\hat{\boldsymbol{n}} \times (\boldsymbol{B} + \boldsymbol{C}) = \hat{\boldsymbol{n}} \times \boldsymbol{B} + \hat{\boldsymbol{n}} \times \boldsymbol{C}$$

Now let

$$A = c\hat{n} \tag{6.27}$$

We will then have

$$\frac{1}{c}\mathbf{A}\times(\mathbf{B}+\mathbf{C}) = \frac{1}{c}\mathbf{A}\times\mathbf{B} + \frac{1}{c}\mathbf{A}\times\mathbf{C}$$

ending up with the original formula of

$$A \times (B + C) = A \times B + A \times C$$

⁷Cross product, Wikiversity

Eq. 6.26 follows from Eq 6.25 combined with the corollary of

$$A \times B = -B \times A \tag{6.28}$$

$$(A+B) \times C = -[C \times (A+B)]$$

= $-(C \times A + C \times B)$
= $-C \times A - C \times B$
= $A \times C + B \times C$

We continue with our task of multiplying out the cross product of the vectors using Eq. 6.24, 6.25, and 6.26. By substituting $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ with B:

$$\mathbf{A} \times \mathbf{B} = (a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}) \times (b_1 \hat{\mathbf{i}} + b_2 \hat{\mathbf{j}} + b_3 \hat{\mathbf{k}})$$
 (6.29)

$$= (a_1\hat{\mathbf{i}} + a_2\hat{\mathbf{j}} + a_3\hat{\mathbf{k}}) \times \mathbf{B} \tag{6.30}$$

$$=a_1\hat{i}\times B + a_2\hat{j}\times B + a_3\hat{k}\times B \tag{6.31}$$

$$= a_1 \hat{i} \times (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) + a_2 \hat{j} \times (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) + a_3 \hat{k} \times (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k})$$
(6.32)

$$=a_1b_1\hat{\boldsymbol{i}}\times\hat{\boldsymbol{i}}+a_1b_2\hat{\boldsymbol{i}}\times\hat{\boldsymbol{j}}+a_1b_3\hat{\boldsymbol{i}}\times\hat{\boldsymbol{k}}+a_2b_1\hat{\boldsymbol{j}}\times\hat{\boldsymbol{i}}+a_2b_2\hat{\boldsymbol{j}}\times\hat{\boldsymbol{j}}+a_2b_3\hat{\boldsymbol{j}}\times\hat{\boldsymbol{k}}+a_3b_1\hat{\boldsymbol{k}}\times\hat{\boldsymbol{i}}+a_3b_2\hat{\boldsymbol{k}}\times\hat{\boldsymbol{j}}+a_3b_3\hat{\boldsymbol{k}}\times\hat{\boldsymbol{k}}$$
(6.33)

With the following corollaries,

$$\hat{\boldsymbol{i}} \times \hat{\boldsymbol{i}} = 0 \tag{6.34}$$

$$\hat{\boldsymbol{j}} \times \hat{\boldsymbol{j}} = 0 \tag{6.35}$$

$$\hat{\boldsymbol{k}} \times \hat{\boldsymbol{k}} = 0 \tag{6.36}$$

$$\hat{i} \times \hat{j} = -\hat{j} \times \hat{i} = \hat{k}$$
 (6.37)

$$\hat{j} \times \hat{k} = -\hat{k} \times \hat{j} = \hat{i} \tag{6.38}$$

$$\hat{k} \times \hat{i} = -\hat{i} \times \hat{k} = \hat{j} \tag{6.39}$$

(6.40)

Eq. 6.33 simplifies down to

$$\mathbf{A} \times \mathbf{B} = a_1 b_2 \hat{\mathbf{k}} - a_1 b_3 \hat{\mathbf{j}} - a_2 b_1 \hat{\mathbf{k}} + a_2 b_3 \hat{\mathbf{i}} + a_3 b_1 \hat{\mathbf{j}} - a_3 b_2 \hat{\mathbf{i}}$$
(6.41)

$$= (a_2b_3 - a_3b_2)\hat{i} - (a_1b_3 - a_3b_1)\hat{j} + (a_1b_2 - a_2b_1)\hat{k}$$
(6.42)

We recall that a determinant of order 2 is defined by

$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1 \tag{6.43}$$

A determinant of order 3 can be defined in terms of determinants of order 2 as

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

$$(6.44)$$

Eq. 6.42 is equivalent to

$$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \hat{\mathbf{i}} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \hat{\mathbf{j}} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \hat{\mathbf{k}}$$
 (6.45)

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{j} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
 (6.46)

It should be noted that formula 6.46 is by no means a definition of cross product, because obtaining it must assume the distributivity law a . We should view 6.46 simply as a convenient tool for making calculations

In addition, Definition like 26 that avoid dependence on explicit representations of vectors in terms of any particular coordinate system are called *invariant* or *coordinate-free*. 6.46 doesn't preserve such invariant because it assumes a Cartesian space^b

Curl

⁸ From Eq. 6.46 we construct the curl:

$$\nabla \times \boldsymbol{v} = \begin{vmatrix} \hat{\boldsymbol{x}} & \hat{\boldsymbol{y}} & \hat{\boldsymbol{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_x & v_y & v_z \end{vmatrix}$$
(6.47)

$$= \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right)\hat{\boldsymbol{x}} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right)\hat{\boldsymbol{y}} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right)\hat{\boldsymbol{z}}$$
(6.48)

The Geometrical Interpretation of the Divergence

The curl is a measure of how much the vector v "curls around" the point in question

^aThe determinant pre-assumes the distributivity of cross product

^bCross product, Wikiversity

⁸Introduction to Electrodynamics by Griffiths, 3rd, p. 19

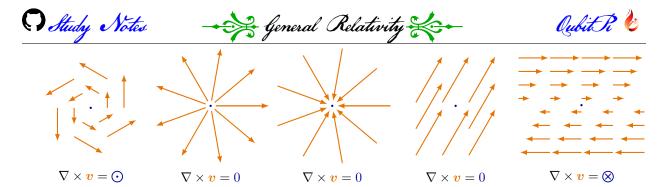


Figure 6.4: Curl of vector fields

6.1.4 Line Integrals

⁹ Throughout our discussion we assime that the functions under discussion have all the continuity and differentiability properties that are needed in any given situation

If a charge is moving in an electromagnetic field with a constant force F (constant in both direction and magnitude), then we know that the work done by this force is the product of the component of F in the direction of motion and the distance the charged particle moves, i.e.

$$W = \mathbf{F} \cdot \Delta \mathbf{R} \tag{6.49}$$

where R is the vector from the initial position of the particle to its final position. Now suppose that F is not constant, but instead is a vector function that varies from point to pint throughout a certain region of the plane, say

$$F = F(x, y) = M(x, y)\hat{i} + N(x, y)\hat{j}$$
 (6.50)

The vector-value function 6.50 is usually called *force field*. More generally, a *vector field* in the plane is any vector-valued function that associates a vector with each point (x, y) in a certain plane region R. In this context a function whose values are numbers (scalars) is called a *scalar field*. Every scalar field f(x, y) gives rise to a corresponding vector field

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\hat{\pmb{i}} + \frac{\partial f}{\partial y}\hat{\pmb{y}} \tag{6.51}$$

This is called the *gradient field* of f. Some vector fields are gradient fields, but most are not. Those gradient fields, however, are of special importance

Suppose also that this variable force pushes the charged particle along a smooth curve ${\cal C}$ with a parametric equations

$$x = x(t)$$
 and $y = y(t)$, $t_1 \le t \le t^2$ (6.52)

The work done by this force is denoted by

$$\int_{C} \mathbf{F} \cdot d\mathbf{R} \quad \text{or} \quad \int_{C} M(x, y) dx + N(x, y) dy$$
 (6.53)

⁹Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 751

This is called the **line integral**

We approximate the curve by a polygonal path as shown in Fig. 6.5. That is, choose points $P_0 = A, P_1, P_2, \ldots, P_{n-1}, P_n = B$ along C in this order; let $\mathbf{R_k}$ be the position vector of P_k and define the n incremental vectors by $\Delta \mathbf{R_k} = \mathbf{R_{k+1}} - \mathbf{R_k}$, where $k = 0, 1, \ldots, n-1$

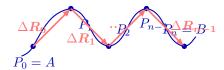


Figure 6.5: Approximating line integral

If we denote by F_k the value of the vector function F at P_k and form the sum

$$\sum_{k=0}^{n-1} \mathbf{F_k} \cdot \Delta \mathbf{R_k} \tag{6.54}$$

then the *line integral of* F *along* C is defined to be the limit of sums

$$\int_{C} \mathbf{F} \cdot d\mathbf{R} = \lim_{k=0}^{n-1} \mathbf{F}_{k} \cdot \Delta \mathbf{R}_{k}$$
 (6.55)

 a It will often be necessary to consider situations in which th path of integration C is a *closed* curve. In this case a line integral is usually written with a small circle on the integral sign, as in

$$\oint_C \mathbf{F} \cdot d\mathbf{R}$$

^aCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 757

The Fundamental Theorem of Calculus

¹⁰We intuitively know that the **definite integral** of a continuous function is the limit of approximating sums, i.e.

$$\int_{a}^{b} f(x)dx = \lim_{\max \Delta x_k \to 0} \sum_{k=1}^{n} f(x_k^*) \Delta x_k$$
(6.56)

The definite integral which is defined here is often called the **Riemann integral**, in honor of the 19th-centry German mathematician who was the first to give a careful discussion of integrals of discontinuous functions¹¹

Eq. 6.56 immediately proves the following properties of definite integral¹²:

¹⁰Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 206

¹¹Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 202

¹²Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 214

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx \tag{6.57}$$

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx \tag{6.58}$$

$$\int_{a}^{b} [f(x) + g(x)]dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx$$
 (6.59)

if
$$f(x) \le g(x)$$
 on $[a,b]$, then $\int_a^b f(x)dx \le \int_a^b g(x)dx$ (6.60)

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
 (6.61)

This definition works for integrals of rather simple functions such as

$$\int_0^b x dx = \frac{b^2}{2}$$

but not for such complicate integrals as

$$\int_0^1 \frac{x^4}{(7+x^5)^{\frac{1}{3}}} dx$$

The Fundamental Theorem of Calculus links the concept of differentiating a function with the concept of integrating a function, showing that these two operations are essentially inverse of one another. Before the discover of this theorem, however, it was not recognized that these two operations were related. Ancient Greek mathematicians knew how to compute area via infinitesimals, an operation that we would now call integration. The origins of differentiation likewise predate the fundamental theorem of calculus by hundreds of years. The historical relevance of the fundamental theorem of calculus is not the ability to calculate these operations, but the realization that the two seeminly distinct operations are actually closely related

Theorem 5 (The First Fundamental Theorem of Calculus)

Let f be a continuous real-valued function defined on closed interval [a,b]. Let F be the function defined, for all x in [a,b], by

$$F(x) = \int_{a}^{x} f(t)dt \tag{6.62}$$

Then F is uniformly continuous on [a,b] and differentiable on the open interval (a,b) and

$$F'(x) = f(x) \tag{6.63}$$

for all x in (a, b) so F is an antiderivative of f

Proof of Theorem 5 13 For a given function f, define the function F(x) as

$$F(x) = \int_{a}^{x} f(t)dt$$

For any two number x_1 and $x_1 + \Delta x$ in [a, b], we have

$$F(x_1 + \Delta x) - F(x_1) = \int_a^{x_1 + \Delta x} f(t)dt - \int_a^{x_1} f(t)dt$$
 (6.64)

$$= \int_{a}^{x_1 + \Delta x} f(t)dt + \int_{x_1}^{a} f(t)dt \text{ (by Eq. 6.57)}$$
 (6.65)

$$= \int_{x_1}^{x_1 + \Delta x} f(t)dt \text{ (by Eq. 6.61)}$$
 (6.66)

To be able to go any further, we shall introduce the Mean value theorem for definite integrals

Theorem 6 (Mean Value Theorem for Definite Integrals)

If $f:[a,b]\to\mathbb{R}$ is continuous and g is an integrable function that does not change sign on [a,b], then there exists c in (a, b) such that

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$
(6.67)

Proof suppose $f:[a,b] \to \mathbb{R}$ is continuous and g is a *non-negative* integrable function on [a,b]. By the extreme value theorem, there exists m and M such that for each x in [a,b], $m \leq f(x) \leq M$ and f[a,b] = [m,M]. Since g is non-negative,

$$m\int_{a}^{b}g(x)dx \le \int_{a}^{b}f(x)g(x)dx \le M\int_{a}^{b}g(x)dx \tag{6.68}$$

If g(x) = 0,

$$0 \le \int_{a}^{b} f(x)g(x)dx \le 0 \tag{6.69}$$

$$\int_{a}^{b} f(x)g(x)dx = 0 \tag{6.70}$$

so for any $c \in [a, b]$

$$\int_{a}^{b} f(x)g(x)dx = f(c) \int_{a}^{b} g(x)dx = 0$$
 (6.71)

If $g(x) \neq 0$,

$$m \le \frac{1}{\int_{-a}^{b} g(x)dx} \int_{a}^{b} f(x)g(x)dx \le M$$
(6.72)

By the intermediate value theorem, f attains very value of the interval [m, M] so for some c in

¹³ Proof of the first part, Fundamental theorem of calculus, Wikipedia

$$f(c) = \frac{1}{\int_{a}^{b} g(x)dx} \int_{a}^{b} f(x)g(x)dx$$
 (6.73)

that is,

$$f(c) \int_{a}^{b} g(x)dx = \int_{a}^{b} f(x)g(x)dx$$
 (6.74)

Finally, if g is negative on [a,b], we can still get the same result.

By having g(x) = 1 in mean value theorem for integration, we have

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$
 (6.75)

We can now move on with Eq. 6.66. There exists a real number $c \in [x_1, x_1 + \Delta x]$ such that

$$F(x_1 + \Delta x) - F(x_1) = \int_{x_1}^{x_1 + \Delta x} f(t)dt = f(c)\Delta x$$
 (6.76)

SO

$$\frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = f(c) \tag{6.77}$$

$$\lim_{\Delta x \to 0} \frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = \lim_{\Delta x \to 0} f(c) \tag{6.78}$$

that is,

$$F'(x_1) = f(x_1) (6.79)$$

Corollary 1: Corollary of Theorem 5

If f is a real-valued continuous function on [a,b] and F an antiderivative of f in [a,b], then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$
 (6.80)

Note that the corollary assumes continuity on the whole interval. This result is strenghened slightly in Theorem 7

Proof of Corollary 1

¹⁵ Suppose F is an antiderivative of f, which is continuous on [a,b]. Let G(x) also be an antiderivative of

¹⁵Proof of the corollary, Fundamental theorem of calculus, Wikipedia

$$G(x) = \int_{a}^{x} f(t)dt \tag{6.81}$$

By Theorem 6, we have

$$F'(x) = f(x) \tag{6.82}$$

$$G'(x) = f(x) \tag{6.83}$$

It is easy to see then

$$F - G = c \tag{6.84}$$

where c is a constant. That is, there is a number c such that

$$G(x) = F(x) + c \tag{6.85}$$

for all $x \in [a, b]$

Let x = a, we have

$$F(a) + c = G(a) = \int_{a}^{a} f(t)dt = 0$$
 (6.86)

which means

$$c = -F(a) (6.87)$$

ΟГ

$$G(x) = F(x) - F(a)$$
 (6.88)

Therefore

$$\int_{a}^{b} f(t)dt = G(b) = F(b) - F(a)$$
(6.89)

Theorem 7 (The Second Fundamental Theorem of Calculus: Newton-Leibniz Theorem)

Let f be a real-valued function on a closed interval [a,b] and F a continuous function on [a,b]which is an antiderivative of f in (a, b):

$$F'(x) = f(x) \tag{6.90}$$

If f is Riemann integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
 (6.91)

Here we do not assume f is continuous

Proof of Theorem 7 16 Let f be Riemann integrable on [a,b] and let f admit an antiderivative F on (a,b) such that F is continuous on [a,b].

Begin with the quantity F(b) - F(a). Let there be numbers x_0, \ldots, x_n such that

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$
 (6.92)

If follows that

$$F(b) - F(a) = F(x_n) - F(x_0)$$
(6.93)

Now, we add each $F(x_i)$ along with its additive inverse, so that the resulting quantity is equal:

$$F(b) - F(a)$$
 (6.94)

$$= F(x_n) + [-F(x_{n-1} + F(x_{n-1}))] + \ldots + [-F(x_1 + F(x_1))] - F(x_0)$$
(6.95)

$$= [F(x_n) - F(x_{n-1})] + [F(x_{n-1}) - F(x_{n-2})] + \ldots + [F(x_2) - F(x_1)] + [F(x_1) - F(x_0)]$$
(6.96)

$$= \sum_{i=1}^{n} \left[F(x_i) - F(x_{i-1}) \right]$$
 (6.97)

Since F is differentiable on interval (a,b) and continuous on [a,b], it is also differentiable on each interval (x_{i-1},x_i) and continuous on each interval $[x_{i-1},x_i]$. According to the Mean Value Theorem, for each i there exists a c_i in (x_{i-1},x_i) such that

$$F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1})$$
(6.98)

Plugging this equation into Eq. 6.97, we get

$$F(b) - F(a) = \sum_{i=1}^{n} \left[F'(c_i)(x_i - x_{i-1}) \right] = \sum_{i=1}^{n} \left[f(c_i) \Delta x_i \right]$$
 (6.99)

We are describing the area of a rectangle, with the width times the height, and we are adding the areas together. Each rectangle, by virtue of the Mean Value Theorem, describes an approximation of the curve section it is drawn over. Also Δx_i need not be the same for all values of i. What we will do is to approximate the curve with n rectangles. As the widths of the partitions get smaller and n increases, we get closer to the actual areas

Since f is Riemann integrable:

¹⁶Proof of the second part, Fundamental theorem of calculus, Wikipedia

$$\lim_{\|\Delta x_i\| \to 0} F(b) - F(a) = \lim_{\|\Delta x_i\| \to 0} \sum_{i=1}^{n} [f(c_i) \Delta x_i]$$
 (6.100)

$$F(b) - F(a) = \lim_{\|\Delta x_i\| \to 0} \sum_{i=1}^{n} [f(c_i) \Delta x_i]$$
 (6.101)

$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$
 (6.102)

Independence of Path & Conservative Fields

¹⁷ We have already known that the vector field is the gradient of a scalar field. The Fundamental Theorem of Calculus of single-variable in the case of 2 variables can be derived as follows:

$$\int_{C} \mathbf{F} \cdot d\mathbf{R} = \int_{C} \nabla f \cdot d\mathbf{R} \tag{6.103}$$

$$= \int_{a}^{b} \left(\nabla f \cdot \frac{d\mathbf{R}}{dt} \right) dt \tag{6.104}$$

$$= \int_{a}^{b} \left[\left(\frac{\partial f}{\partial x} \hat{\boldsymbol{x}} + \frac{\partial f}{\partial y} \hat{\boldsymbol{y}} \right) \cdot \frac{d(x \hat{\boldsymbol{x}} + y \hat{\boldsymbol{y}})}{dt} \right] dt$$
 (6.105)

$$= \int_{a}^{b} \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} \right) dt$$
 (6.106)

$$= \int_a^b \frac{d}{dt} f(x, y) dt \tag{6.107}$$

$$= f(b) - f(a)$$
 (6.108)

Theorem 8 (Fundamental Theorem of Calculus for Line Integrals)

If a vector field ${m F}$ is the gradient of some scalar field f in a region R, so that ${m F}=
abla f$ in R, and if C is any piecewise smooth curve in R with initial and final points A and B, then

$$\int_{C} \mathbf{F} \cdot d\mathbf{R} = f(B) - f(A)$$
(6.109)

The right side of the Eq. 6.109 depends only on the points A and B and not at all on the path C that joins them. The line integral on the left side of Eq. 6.109 therefore has the same value for all paths C from Ato B. This can be expressed by saying that the line integral of a gradient field is independent of the path

. Next, it is clear from Eq. 6.109 that if C is a closed path, then

$$\oint_C \mathbf{F} \cdot d\mathbf{R} = 0 \tag{6.110}$$

¹⁷Calculus with Analytic Geometry by George F. Simmons, 2nd, p. 758

These argument show that

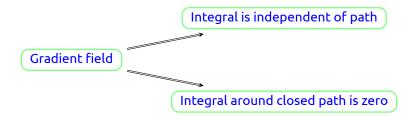
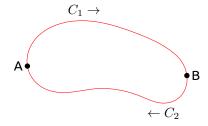


Figure 6.6: The symbol ⇒ means "implies"

We are going to show that these 3 properties are equivalent, in the sense that each implies the other two.

Suppose that the line integral of the vector field F is independent of the path. We shall approve that the line integral of the vector field F around a closed path is zero.

We examine the figure below, in which two points A and B are chosen on the closed path C. These points divide C into paths C_1 , from A to B, and C_2 , from B to A.



Since both C_1 and $-C_2$ are paths from A to B, the assumption of independence of path implies that

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{R} = \underbrace{\int_{-C_2} \mathbf{F} \cdot d\mathbf{R} = -\int_{C_2} \mathbf{F} \cdot d\mathbf{R}}_{E_2 = 6.57}$$
(6.111)

It them follows that

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{R} + \int_{C_2} \mathbf{F} \cdot d\mathbf{R} = \oint_C \mathbf{F} \cdot d\mathbf{R} = 0$$
 (6.112)

Then we can easily reverse this argument to show that the integral from A to B is independent of the path

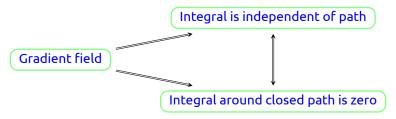
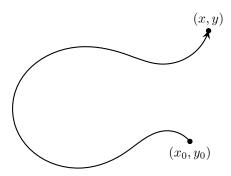


Figure 6.7: The updated Fig. 6.6

To complete the proof of the equivalence of the 3 properties, it suffices to show that if F is a vector fineld whose line integral is independent of path, then $F = \nabla f$ for some scalar field f. To do this, we choose a fixed point (x_0, y_0) and an arbitrary point (x, y). Given any path from C from (x_0, y_0) to (x, y), because we assume the hypothesis of independence of path, we can unambiguously define the function f(x, y) by

$$f(x,y) = \int_{C} \mathbf{F} \cdot d\mathbf{R} = \int_{(x_0,y_0)}^{(x,y)} \mathbf{F} \cdot d\mathbf{R}$$
 (6.113)



 \boldsymbol{F} has the usual form of $\boldsymbol{F} = M(x,y)\boldsymbol{i} + N(x,y)\boldsymbol{j}$ so that

$$f(x,y) = \int_{(x_0,y_0)}^{(x,y)} M(x,y)dx + N(x,y)dy$$
 (6.114)

Let's first hold y fixed and move along the x-direction by Δx . By The Fundamental Theorem of Calculus, Eq 6.114 implies

$$f(x + \Delta x, y) - f(x, y) = \int_{(x,y)}^{(x+\Delta x,y)} M dx$$
 (6.115)

so

$$\frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{(x, y)}^{(x + \Delta x, y)} M dx = M$$
 (6.116)

Similarly

$$\frac{\partial f}{\partial y} = N \tag{6.117}$$

SO

$$\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} = \left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j}\right)f = \nabla f = M\mathbf{i} + N\mathbf{j} = \mathbf{F}$$
(6.118)

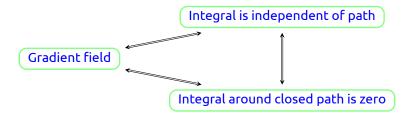


Figure 6.8: The updated Fig. 6.7

A force that has one of 3 properties above is called conservative.

6.1.5 Green's Theorem

Proof of Green's Theorem

Green did not actually derive the form of "Green's theorem" which appears in the form we see to-day; rather, he derived a form of the "divergence theorem", which appears on pages 10 - 12 of his An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. A proof of the theorem was finally provided in 1851 by Bernhard Riemann in his inaugural dissertation: Bernhard Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (Basis for a general theory of functions of a variable complex quantity), (Göttingen, (Germany): Adalbert Rente, 1867); see pages 8 - 9.^a

Having formulating the Riemannian Geometry, Riemann laid the foundations of the mathematics of $\mathbf{General}\ \mathbf{Relativity}^b$

A separate part has been dedicated to Riemannian Geometry which shall include the rigorous proof of Green's theorem

Given that, the purpose of this section is solely for revealing the nature of the link between line integrals and double integrals^c

Let's look at a rectangular path like the one shown below

^aGreen's theorem, Wikipedia

^bBernhard Riemann, Wikipedia

^cCalculus with Analytic Geometry by George F. Simmons, 2nd, p. 764

$$\oint_{C} M dx + N dy = \iint_{R} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right] dA$$
 (6.119)

Chapter 7

Maxwell's Equations

Does the Electromagnetic Field physically exist?

"There exists a model of the universe which includes a field known as the Electromagnetic Field. This model does a remarkably good job of predicting the observations we make in the world. It does so good at making such predictions that it is often phrased as 'existing in the world" a

^ahttps://philosophy.stackexchange.com/a/28010

7.1 Gauss's Law for Electic Fields

There are two kinds of electric field:

- 1. the *electrostatic* field produced by electric charge
- 2. the induced electric field produced by a changing magnetic field

Gauss's law for electric fields deals with the electrostatic field. It relates the spatial behavior of the electrostatic field to the charge distribution that produces it. The integral form is generally written like this:

7.1.1 The Electric Field

To understand Gauss's law, we first have to understand the concept of the electric field. In some physics and engineering books, no direct definition of the electric field is given; instead we see a statement that an electric field is "said to exist" in any region in which electrical forces act. But what exactly is an electric field? This question has deep philosophical significance and it is not easy to answer¹. It traces all the way back to a person named Michael Faraday who is believed to discover the concept of an electric field.

While Faraday did not develop a complete mathematical description of the electric field, his concept laid the groundwork for later scientists to quantify the electric field using mathematical equations. The book by Michael Faraday that introduced the concept of the electric field is called *Experimental Researches in Electricity*, particularly in its **Eleventh Series**, a chapter of the book.

Faraday conducted an experiment using two long coils. Let's call them coils A and B. Coil A was connected to a battery source while coil B was connected to a falavanometer, which measures the current in B. He discovered that, when coils were long enough and battery source was strong enough, the falavanometer

¹Fleisch, A Student's Guide to Maxwell's Equations, p. 3

🛶 General Relativity 🔆

Qubit Pi

signaled a slight current passing through coil B at the moment of connecting coil A the battery. In addition, when coil A and the battery was disconnected, the same amount of currrent in coil B was detected again, but this time the current was in the opposite direction.²

² Experimental Researches In Electricity, Vol. 1, Faraday, Michael, 6 - 11

Chapter 8

Euclid's Elements

- 'Ηιτήσθω ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν.
- 2. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν.
- 3. Καὶ παντὶ κέντρω καὶ διαστήματι κΰκλον γράφεσθαι.
- 4. Καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι.
- 5. Καὶ ἐὰν εἰς δΰο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δΰο ὀρθῶν ἐλάσσονας ποιῆ, ἐκβαλλομένας τὰς δΰο εὐθείας ἐπ᾽ ἄπειρον συμπίπτειν, ἐφ᾽ ἃ μέρη εἰσὶν αἱ τῶν δΰο ὀρθῶν ἐλάσσονες.

Bibliography

Fleisch, Daniel. *A Student's Guide to Maxwell's Equations*. Cambridge University Press, 2008. isbn: 978-0-521-87761-9 (cit. on p. 65).